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Background: While patient-derived xenografts (PDXs) offer a powerful modality for translational cancer research, a precise
evaluation of how accurately patient responses correlate with matching PDXs in a large, heterogeneous population is needed
for assessing the utility of this platform for preclinical drug-testing and personalized patient cancer treatment.

Patients and methods: Tumors obtained from surgical or biopsy procedures from 237 cancer patients with a variety of solid
tumors were implanted into immunodeficient mice and whole-exome sequencing was carried out. For 92 patients, responses
to anticancer therapies were compared with that of their corresponding PDX models.

Results: We compared whole-exome sequencing of 237 PDX models with equivalent information in The Cancer Genome Atlas
database, demonstrating that tumorgrafts faithfully conserve genetic patterns of the primary tumors. We next screened PDXs
established for 92 patients with various solid cancers against the same 129 treatments that were administered clinically and
correlated patient outcomes with the responses in corresponding models. Our analysis demonstrates that PDXs accurately
replicate patients’ clinical outcomes, even as patients undergo several additional cycles of therapy over time, indicating the
capacity of these models to correctly guide an oncologist to treatments that are most likely to be of clinical benefit.

Conclusions: Integration of PDX models as a preclinical platform for assessment of drug efficacy may allow a higher success-
rate in critical end points of clinical benefit.
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Introduction

The large percentage of investigational cancer drugs fail to dem-

onstrate clinical activity due to an inability to identify patients

that are most likely to respond [1, 2]. With the understanding

that each individual cancer is characterized by patient-specific

molecular events, it is becoming apparent that cell-line xenografts

diverge substantially from the tumors they were derived, and can-

not recapitulate patients’ responses to therapy. Furthermore,

genetically engineered models develop lesions triggered by the

same initiating oncogenic hit(s), lack genetic diversity, and do

not represent the wide heterogeneity that occurs on a population

basis [3, 4]. Hence, new strategies that more closely mimic individ-

ual tumors are required to maximize drug development success.
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Patient-derived-xenografts (PDXs), established from tumor

tissue directly engrafted into immunodeficient mice, are one pos-

sible solution. Increasing evidence indicate that PDXs faithfully

conserve biological features of the parental malignancies (such as

histologic architecture, gene-expression, mutational status and

metastatic potential), as well as the complex interplay between

cancer cells and tumor microenvironment [5–10], establishing

PDXs as a more suitable model of human cancer.

Given the potential application of PDXs to clinical decision-

making and drug-development, extensive research has been

devoted to assessing the response of these models to anticancer

treatment. Several retrospective studies comparing patients’ re-

sponses to conventional anticancer therapies with that of corres-

ponding PDXs reported comparable treatment outcomes in

various solid tumor types [11–17]. Furthermore, a remarkable

similarity in response rates was observed between PDXs and re-

spective clinical trials [13, 18–22]. Consequently, a number of

very small prospective studies have been conducted focusing on

the integration of PDXs into clinical-care paradigms [5–8, 23,

24]. While these studies suggest that PDXs may predict individual

drug responses [5, 8], they have focused on specific tumor types

or drug(s) combinations and have limited value in predicting pa-

tient responses at a population level due to the small number of

models used. Although a recent large-scale in vivo drug screen

that profiled over 60 treatment regimens against an extensive col-

lection of PDXs (1075 models across 15 cancer-types) has shown

that tumorgrafts were able to reproduce treatment responses

from previous clinical trials [25], a comprehensive analysis of the

clinical accuracy of these models across a larger, more heteroge-

neous patient cohort and matched PDX counterparts has not

been previously reported.

Here we carried out whole-exome next-generation sequencing

(WES) on 237 early passage PDXs (including 4 tumorgrafts with

matched primary tumor), and compared PDX sequencing data

with equivalent information in The Cancer Genome Atlas (TCGA)

database, demonstrating that tumorgrafts faithfully conserved gen-

etic patterns of the primary tumors. To underscore the promise of

this technology as a tool for guiding therapeutic responses, we

have screened PDXs established for 92 patients with various solid

cancers against the same 129 treatments that were administered

clinically (some patients having undergone multiple treatments).

Our analysis revealed that tumor growth regression in PDXs accur-

ately parallels clinical responses in patients, indicating that these

models have the potential to correctly guide an oncologist to treat-

ments that are most likely to be of clinical benefit. Furthermore,

PDXs retained the capacity to identify viable treatments for recur-

rent disease arising months after the initial presentation, suggest-

ing the potential to guide therapeutic decisions as multiple cycles

of disease progression and therapy occur.

Methods

Patient inclusion

Patients were not selected by any specific criteria other than the presence
of a drug correlation. All patients whose tumor models were tested and
received therapy in the clinical setting were included.

Model generation

All animal procedures were carried out at Champions Oncology following
Institutional Animal Care and Use Committee protocols. Methods con-
cerning in vivo experiments are provided in supplementary experimental
procedures, available at Annals of Oncology online.

Characterization of patient tumor and PDX
histology

Details on patient tumor and PDX histology are provided in supplemen-
tary experimental procedures, available at Annals of Oncology online.

Mutation profiling and CNV analysis

Details on sequencing, mutation profiling and CNV analysis are provided
in supplementary experimental procedures, available at Annals of
Oncology online.

Tumor growth regression and RECIST

Upon study completion, percent tumor regression (%TR) values were
calculated using initial (i) and final (f) tumor measurements for the treat-
ment (T) group by the formula: %TR¼ [1� (Tf/Ti)]� 100. Responses
to therapy were then converted to clinical outcomes (based on RECIST)
from changes in tumor volume over the course of treatment (details
available at Annals of Oncology online).

Statistical analysis

Differences in tumor volumes between treated and control animals dur-
ing drug screening were analyzed using Student’s t-test, where P< 0.05
was considered significant. Associations between patient clinical out-
come and the response in PDXs were examined using Fisher’s exact test,
with P< 0.05 set as the threshold for significance. All statistical analyses
were two-sided.

Results

Establishment of PDX models

Tumor samples from 1163 patients with variety of advanced solid

cancers were implanted into immunodeficient mice. The tumors

ranged from common subtypes such as colorectal, lung, and

breast, to rarer tumors including adenoid cystic carcinoma and

cholangiocarcinoma (Figure 1A). Of these samples, 578 success-

fully engrafted to generate a PDX model, at an overall engraft-

ment rate of 49% (Figure 1B). Engraftment rates varied within

each tumor type, ranging from 85% for colorectal tumors

(n¼ 112) to 30% for breast (n¼ 155) (Figure 1B). The average

time from engraftment to drug exposure across all implanted

models was 16 weeks, with substantial variability within each

tumor type (supplementary Table S1, available at Annals of

Oncology online).

PDXs preserve histopathology and genetic
landscape of the parental tumor

The histology of parental tumors and corresponding PDXs used

for the subsequent correlation analysis was compared by an inde-

pendent pathologist. Primary lesions and matching PDXs from 4

different tumor types are shown in Figure 2A. PDX models faith-

fully conserved histopathological features of the parental lesions
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Figure 1. Engraftment rate by tumor type. (A) Graph depicting different tumor types implanted into immunodeficient mice to establish PDX
models. Green bars represent the total number of implantations carried out for a particular tumor type, whereas blue bars depict a number
of successfully engrafted implants (generating at least one model in immunodeficient mice). (B) Graph depicts the percent of engraftment
for PDX models generated from different tumor types. Red line shows the average engraftment rate across all tumors.
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(Figure 2A), and maintained histopathological fidelity over mul-

tiple passages (Figure 2B). Out of 578 tumorgrafts, WES data was

available for 237 models (109 colorectal, 30 ovarian, 38 lung, 30

head and neck, and 30 breast cancers). This data was compared

with equivalent information in the TCGA database (224 colorec-

tal, 316 ovarian, 227 lung, 306 head and neck and 772 breast can-

cers). Our analysis revealed that the background mutation

frequencies in PDXs and primary TCGA tumors were highly

comparable (Figure 2C). The slightly higher frequencies for PDX

models in some cancers are likely due to the lack of matched nor-

mal for analysis. Nonetheless, mutation frequencies of mostly

mutated genes in PDXs of different tumor types highly resembled

mutation frequencies reported for these genes in TCGA

(supplementary Figure S1, available at Annals of Oncology on-

line). Furthermore, the frequencies of specific base-pair substitu-

tions in PDXs and TCGA database showed high proximity,

although differences were observed in smoking-related C>A

transversions in NSCLC and A>G transitions in general (Figure

2D). Additionally, we compared somatic single nucleotide vari-

ants (SNVs) and copy number variations (CNVs) in 4 primary

tumors [non-small-cell lung cancer adenocarcinoma (NSCLC),

renal cell carcinoma, synovial sarcoma and dedifferentiated lip-

osarcoma] and matched early passage PDX counterparts. We de-

tected 543 and 634 aberrations across 4 primary tumors and 4

PDX models, respectively (supplementary Table S2, available at

Annals of Oncology online), with 88% of mutations identified in
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Figure 2. PDX models preserve the histopathology and genetic landscape of the parental tumor. (A) Histology (H&E) of PDX models at early
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cient mice) and passage 4. Four PDX models from 4 different tumor types are shown. �10 magnification. (C) Background mutation rates
from WES analysis of 237 early passage PDX models of different tumor types (109 colorectal, 30 ovarian, 38 lung, 30 head and neck and 30
breast cancers) and samples from the TCGA database (224 colorectal, 316 ovarian, 227 lung, 306 head and neck and 772 breast cancers). (D)
Spectrum of specific base-pair substitutions in PDX models and TCGA samples across different cancer types analyzed. (E) Venn diagram sum-
marizes single-nucleotide mutations concurrently detected by WES in four primary tumors and their matched early passage PDX counter-
parts. (F) Spectrum of specific base-pair substitutions in 4 PDX models and parental tumor from which they were established.

Original article Annals of Oncology

2598 | Izumchenko et al. Volume 28 | Issue 10 | 2017

Deleted Text: to 
Deleted Text: is 
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: (
Deleted Text: small 
Deleted Text: ) 


parental tumors present in the corresponding PDXs (Figure 2E;

supplementary Figure S2A and Table S3, available at Annals of

Oncology online). Except for A>C transversions, the majority of

specific mutation types in tumors and matched PDX models

showed tight correlation (Figure 2F). There were no well-

characterized drivers among genes mutated in PDXs only; how-

ever, mutations in cancer genes were detected in each PDX-

primary tumor pair (supplementary Table S4, available at Annals

of Oncology online). Notably, while the allelic frequencies of mu-

tations detected in PDXs and tumors were largely comparable

(supplementary Figure S2B, available at Annals of Oncology on-

line), a number of subclonal events in lung and renal patients dis-

played clonal expansion during PDX generation, supporting the

notion that engraftment and passaging of primary tumors in the

murine host induces dynamic changes in clonal subpopulations

[9, 10, 26]. Nevertheless, the overall concordance in the muta-

tional landscape and CNVs (supplementary Figure S2A–C, avail-

able at Annals of Oncology online) suggests that clonal

composition in the PDX models parallels, to an extent, the gen-

etic heterogeneity seen in the primary lesions.

Positive clinical outcomes can be reproduced by
PDX models

We first tested a number of PDXs against therapies that yielded a

positive outcome in the corresponding patient (Figure 3A and

B). These and other examples that follow are derived from our

clinical correlation dataset (see below). Patient responses to ther-

apy were determined by the treating oncologists using radio-

logical RECIST criteria. PDXs were screened against the same

therapy received by the patient, and responses assessed using

changes in tumor volume as described in the methods section.

A PDX response was designated positive and correlative to the

patient response if it showed the RECIST equivalent of complete

response (CR), partial response (PR), or stable disease (SD), all of

which are generally considered therapeutically beneficial in a clin-

ical setting. As an example, a PDX was established after a lung

bilobectomy for a 45-year-old male with a poorly differentiated,

mucin-producing NSCLC that had invaded through the inter-

lobular pleura. The patient was treated with irinotecan, peme-

trexed, and bevacizumab, showing a durable CR lasting

3500

A

C D E

B
1600 1500

1200

900

600

300

0

NSCLC - 2NSCLC - 1 *

Pancreatic H&N SCC Breast

Control Control Control
Breast

1200

800

400

0

2800

2100

A
ve

ra
ge

 tu
m

or
 v

ol
um

e 
(m

m
3 )

A
ve

ra
ge

 tu
m

or
 v

ol
um

e 
(m

m
3 )

A
ve

ra
ge

 tu
m

or
 v

ol
um

e 
(m

m
3 )

A
ve

ra
ge

 tu
m

or
 v

ol
um

e 
(m

m
3 )

A
ve

ra
ge

 tu
m

or
 v

ol
um

e 
(m

m
3 )

A
ve

ra
ge

 tu
m

or
 v

ol
um

e 
(m

m
3 )

1400

2400

1800

1200

600

0

2800 4000

3000

2000

1000

0

2100

1400

700

0
0 0 0 4 7 11 14 18

Days
5 10 15 20

Days
3 6 9 12 15 18

Days

Surgery Surgery Surgery

Pancreatic
(surgical tissue)

H&N SCC
(surgical tissue)

TNBC
(metastatic lesion)

700

0
0 0 0 3 7 10 14 16 214 7 11 14 17 21

Days

Progression

NSCLC-2
(lymph node)

NSCLC-1
(lung tissue)

TNBC
(metastatic lesion)

Days
2 4 6 8

Days

Surgery Surgery

10 12 14

Irinotecan
pemetrexed

bevacizumab
(complete response)

Irinotecan
pemetrexed

bevacizumab

Docetaxel/Temsirolimus
(short-term partial response)

Olaparib
Carboplatin

(complete response)

Olaparib
Carboplatin

Carboplatin
Gemcitabine
(clinical failure)

Carboplatin
Gemcitabine

Docetaxel/Temsirolimus

Gemcitabine
(clinical failure)

Irinotecan
Pemetrexed
Bevacizumab

Docetaxel
Temsirolimus

Olaparib
Carboplatin

Control Control
Control

Carboplatin
Gemcitabine

Afatinib
Metformin

Afatinib
Metformin

(clinical failure)

Gemcitabine

Gemcitabine
Afatinib

Metformin

**

Patient clinical
progress

PDX model

Patient clinical
progress

PDX model PDX model PDX model

Patient clinical
progress

Patient clinical
progress

Patient clinical
progress

PDX model

Figure 3. PDX models accurately replicate both positive and negative patient responses. (A, B) PDX models were screened against the cor-
responding therapies received by the patient. Graphs show the average tumor volume for three to nine animals 6 SD. *Treated groups sig-
nificantly different from untreated controls at the end point of the experiment (Student’s t-test; P< 0.05). (C–E) As per (A) and (B). Graphs
show the average tumor volume for three to four animals 6 SD. No treated group was significantly different from the corresponding un-
treated control group at the end point of the experiment (Student’s t-test; P< 0.05).

Annals of Oncology Original article

Volume 28 | Issue 10 | 2017 doi:10.1093/annonc/mdx416 | 2599

Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: , 


14 months. In keeping with the patient response, PDX growth

was profoundly inhibited by this drug combination (Figure 3A,

left panel). This patient eventually progressed and a new PDX

was generated from a lymph node metastasis. The patient began

treatment with a combination of docetaxel and temsirolimus,

demonstrating a short-lasting PR. The new PDX model was

tested against the aforementioned treatment and similarly to the

patient, responded to the docetaxel/temsirolimus combination

(Figure 3A, right panel). Figure 3B shows the PDX results for a

48-year-old female with stage III triple-negative breast cancer

(TNBC). A PDX model was developed from a metastatic lesion in

the supraclavicular fossa. Based on the presence of a BRCA1 muta-

tion, the patient was treated with carboplatin and olaparib, which

resulted in a near CR. After treatment with the same regimen,

almost total regression of the engrafted tumor was observed.

Negative clinical outcomes can be reproduced by
PDX models

We next screened a number of models developed from tumors

failing to respond to treatment against the same therapeutic regi-

mens (Figure 3C and E). A 71-year-old male diagnosed with

stage-IV pancreatic ductal adenocarcinoma was treated with

gemcitabine and failed to respond, with continued disease pro-

gression observed clinically. Gemcitabine was also unable to re-

duce tumor growth in the PDX established for this patient

(Figure 3C). A PDX was established for a 61-year-old female with

stage III, heavily pre-treated head and neck squamous cell carcin-

oma while the patient was placed on a new regimen of the off-

label, pan-ERBB inhibitor, afatinib (due to a somatic mutation in

the ERBB4 gene), along with metformin. This treatment could

not prevent further disease progression and consistent with this

outcome, also failed to reduce growth of the implanted tumor

(Figure 3D). The final example is a 34-year-old female presenting

with stage-IV TNBC. A model was developed from a pulmonary

metastasis. During the establishment of the model, the patient

was treated with carboplatin/gemcitabine combination, which

failed to limit continued disease progression. Similarly, these

drugs did not inhibit growth in the PDX (Figure 3E).

PDXs retain therapeutic accuracy over time

Among the challenges facing the implementation of PDXs for

pre-clinical evaluation of anticancer agents, is variable engraft-

ment rates and the long time required to establish the model and

test for drug sensitivity. Although new models can be generated

as cycles of disease progression and therapy occurs, it would be

more practical to use models established from early surgical re-

sections for screening drug sensitivity over time. To test whether

PDXs developed from early resections retain the ability to repli-

cate treatment outcomes observed for recurrent disease, we

screened such models against all therapies employed clinically

from disease presentation to subsequent progression. Three ex-

amples are presented in Figure 4.

Example 1. A PDX model was established from a hepatic lesion

resected from a 71-year-old female with stage-IV endometrioid

ovarian cancer with multiple nodules in the liver and lungs

(Figure 4A). A number of treatments were subsequently clinically

employed, including nab-paclitaxel, yielding a 4-month PR,

followed by trametinib (an MEK inhibitor) upon progression,

which led to disease stabilization for 7 months. Importantly, each

treatment regimen strongly inhibited tumor growth in the PDX

model originally generated from the single hepatic lesion upon

disease presentation.

Example 2. A model was developed from a metastatic lesion in

the tibia for a 58-year-old male with stage-IV, poorly differenti-

ated NSCLC (Figure 4B). The patient was initially treated with

pemetrexed and carboplatin combination, resulting in disease

stabilization, followed by slow progression. At the time of pro-

gression, the patient started treatment with gemcitabine and cis-

platin, leading to a PR lasting 6 months. He was subsequently

treated with a combination of nab-paclitaxel and the mTORC1

inhibitor, everolimus, with another PR observed clinically (for

6 months). Similarly, the PDX model first established from the

metastatic site in the tibia remained sensitive to all of these agents

(Figure 4B).

Example 3. Since evolutionary clonal dynamics imposed by the

selective pressure of anticancer therapies may impact the capacity

of PDXs developed early in the disease course to continue repli-

cating patient outcomes as tumors clinically progress, we

screened two individual PDX models developed from a 55-year-

old male with liposarcoma. The first model was developed before

treatment and the second model after therapy for progressive dis-

ease (Figure 4C). After the first model was developed, the patient

was treated with a CDK4 inhibitor (P1446A-05), which was later

supplemented with the JAK2 inhibitor, ruxolitinib. This initially

led to a decrease in tumor growth before new lesions appeared.

A new PDX model was established from one of these lesions be-

fore the patient being treated with ifosfamide, which yielded a PR

clinically. At progression, the patient was treated with the multi-

kinase inhibitor, regorafenib, with additional tumor regression

observed. Most significantly, when each model was screened

against ifosfamide and regorafenib, both showed substantial

tumor growth inhibition in response to these agents, in keeping

with the positive clinical response seen in the patient (Figure 4C).

Collectively, these results suggest that PDXs established early in

the disease course may retain the capacity to reproduce patient

outcomes to therapies used months later, despite probable tumor

evolution during treatment.

PDXs are accurate and clinically relevant tumor
models

Although our observations further support the potential of this

technology for guiding therapeutic decisions [8, 14, 16], to the

best of our knowledge, no studies have attempted to calculate

specific performance metrics that define how applicable PDXs

are to clinical decision-making. We obtained 129 clinical correl-

ations across 92 patients with advanced solid tumors for whom a

PDX was successfully developed and drug testing completed

(supplementary Table S5, available at Annals of Oncology online).

Out of 129 correlations described in this manuscript 94 are new

and have not been previously reported. Parallel responses in pa-

tients and mice for each one of the 129 correlations shown in sup-

plementary Table S6, available at Annals of Oncology online.

Patient treatment response was provided by the consulting on-

cologist. To assess drug responses in mice, we calculated changes

in tumor volume over the course of treatment by using percent
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tumor regression (%TR), and then converted %TR values to a

clinical outcome equivalent RECIST criteria [27]. Drug dosing

and schedules employed for PDX screening of patient therapies

are listed in supplementary Table S7, available at Annals of

Oncology online. For a number of reasons highlighted in supple-

mentary Table S8, available at Annals of Oncology online, we were

unable to obtain clinical correlations for the remaining 486 pa-

tients who had a tumor successfully implanted.

PDXs that demonstrated RECIST values equivalent to CR, PR,

or SD were designated as positive for drug response. A significant

association was observed between drug responses in patient and

corresponding PDXs in 87% (112/129) of the therapeutic out-

comes (Figure 5A, Fisher’s exact test; P¼ 5.06� 10�16, supple-

mentary Table S6, available at Annals of Oncology online). Our

analysis revealed a sensitivity for the PDX drug screens of 96%,

with a lower 95% confidence interval (CI) of 89% (which meets

the acceptance criteria of 80%), and specificity of 70%, with a

lower 95% CI of 54% (Table 1, top panel). This resulted in

positive and negative predictive values (PPVs and NPVs) of 85%

and 91%, respectively. Notably, the percentage of correlative

therapeutic responses did not vary significantly among different

cancer types (Figure 5B). If the response was considered to correl-

ate only if the RECIST equivalent in xenografts was exactly con-

cordant with RECIST-defined clinical responses in patients, a

significant association was still observed in 91 of 129 (71%) thera-

peutic tests (supplementary Figure S3 and Table S6, available at

Annals of Oncology online). To exclude the possibility that PDXs

are generally sensitive/insensitive to treatment, we have collected

data from a large number of PDX models treated with several

standard-of-care regimens (supplementary Table S9, available at

Annals of Oncology online). A wide range of responses to each

therapy suggests that drug sensitivity is not a general feature, but

is intrinsic and specific to the individual model. A range of re-

sponses to different therapies within individual models (supple-

mentary Table S10, available at Annals of Oncology online),

further supports this suggestion.
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Figure 4. PDX models retain the capacity to replicate multiple lines of therapy. Fragments of each patient tumor [ovarian for (A), lung for (B),
and liposarcoma for (C)] were implanted into immunodeficient mice to establish a PDX model. These models were screened against the
therapies that had been used to treat each patient as they cycled through disease stabilization/regression and disease recurrence. Graphs de-
pict the average tumor volume (mm3) for the different treatment groups at each measurement point, with standard deviations plotted
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Treated groups significantly different from untreated controls at the end point of the experiment (Student’s t-test; P< 0.05).
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Figure 5. PDX drug responses correlate with patient outcomes. (A) Contingency table for correlations between 129 drug responses across
92 PDX models and clinical outcomes seen in patient from whom they were established. **SD, PR and CR were all considered positive test re-
sults (disease control) whereas PD was considered a negative test result. Positive and negative PDX responses were defined from measure-
ments of changes in tumor volume and based on RECIST criteria. Positive and negative patient response information was provided by the
consulting oncologist. (B) Associations between drug responses in patients and the corresponding PDXs for seven different types of cancer
where more than eight patients were available. (C) Contingency tables for correlations between drug responses in PDXs and matched pa-
tients when results were stratified for screens against treatments used immediately following surgery (top) or if additional treatments had
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ease control) whereas PD was considered a negative test result. PDX responses were defined from measurements of changes in tumor vol-
ume and based on RECIST criteria. Patient responses were provided by the consulting oncologist.

Table 1. Values and confidence intervals for parameters of analytical and clinical accuracy for PDX model drug screening

Measurer Result 95% CI

Overall Sensitivity 96% (80/83) 89%–99%
Specificity 70% (32/46) 54%–82
PPV 85% (80/94) 76%–91%
NPV 91% (32/35) 76%–98%

Treatment is first therapy received after tumor collection Sensitivity 97% (29/30) 81%–99%
Specificity 89% (16/18) 64%–98%
PPV 94% (29/31) 77%–99%
NPV 94% (16/17) 69%–99%

Treatment follows other therapies received after tumor collection Sensitivity 96% (51/53) 86%–99%
Specificity 57% (16/28) 37%–75
PPV 81% (51/63) 69%–89%
NPV 89% (16/18) 64%–98%

Values for sensitivity, specificity, and positive and negative predictive values were calculated using the online tool: http://vassarstats.net/. The top table
shows parameters calculated from all 129 correlations in our test population, whilst the middle and bottom tables show the parameter values when correl-
ations were stratified for screens against treatments used immediately following surgery (middle) or if additional treatments had been employed before
the one against which the PDX was screened (bottom).
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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To evaluate if the diagnostic performance of the models

changes as patients progress through multiple lines of therapy, we

stratified our correlation data according to whether or not the pa-

tient treatment was the first received after resection of the tumor

to develop the PDX. There was essentially no change in sensitivity

and a modest decrease in the PPV (from 94% to 81%) and NPV

(from 94% to 89%) if the tested therapy was not the first received

after resection (Figure 5C, Table 1, middle and bottom panels).

Notably, the decrease in specificity and the PPV was primarily

due to twelve patients whose PDX models showed tumor regres-

sion in response to treatment yet who failed to respond to that

therapy clinically. Nevertheless, these results highlight that most

drug responses in PDXs accurately replicate patients’ clinical out-

comes, even as patients continue to undergo several cycles of

therapy overtime.

Discussion

The poor success in oncology drug development is due in part to

the inability to tailor therapy to a group of patients that are more

likely to benefit from the treatment. PDXs maintain the histo-

pathological and molecular features of human tumors [5–8, 23],

and offer a potential solution. Cross-analysis of mice harboring

xenografts from the same tumor enables evaluation of numerous

therapies simultaneously, including those that might not other-

wise be indicated for a particular tumor type, and may also help

avoid exposure to toxicities associated with therapies that pro-

vide no benefit.

A number of retrospective studies have reported a correlation

between drug responses in PDXs and patients’ clinical outcomes

[11–17, 20]. Furthermore, remarkable similarity was seen be-

tween response rates to standard-of-care drugs in PDXs and re-

spective clinical trials [13, 18–22]. Lately, small prospective

studies have demonstrated that PDXs may replicate patient

outcomes across multiple solid tumors and different treatments

[5–8, 23, 24]. A notable example that PDXs may offer a preclinical

tool for drug-development is a recent pilot clinical study in which

refractory advanced cancers were propagated in immunodefi-

cient mice and treated with 63 drugs across 232 treatment regi-

mens. Eleven of 13 patients benefited from PDX-directed

therapies, including patients placed on treatments not typically

recommended in clinical practice [5]. Although promising, these

studies have focused on specific tumor types or drugs/drug com-

binations and the ability to conduct statistically appropriate cor-

relation analyses was limited by the small number of cases

evaluated. A recent in vivo drug screen expanded such observa-

tions to a greater number of human cancers and demonstrated

that PDXs with a diverse set of driver mutations may reproduce

treatment responses known from previous clinical trials [25].

However, a precise evaluation of how accurately patient re-

sponses correlate with matching PDXs in a large, heterogeneous

population and real treatment settings is important for assessing

the utility of this platform.

In order for PDXs to be considered a reliable preclinical tool

for drug testing, it is critical that tumorgrafts retain the genetic

changes found in primary cancers. Here we demonstrate that

genomic alterations identified via WES analyses of PDX models

and matched parental tumors were nearly identical. Moreover,

sequencing of 237 early-passage PDXs established from patients

representing five major solid tumor types showed remarkable

mutational fidelity to TCGA database. Our dataset represents one

of the largest genomic landscape analysis of PDX models to date,

and further supports the notion that PDXs retain driver muta-

tions and molecular characteristics of primary tumors [25], even

across serial passaging [9, 10].

Advances in high-throughput genomic technologies allow

characterization of the cancer genome in a time frame compatible

with treatment decisions. The PDX platform can be used to test

different empirical treatment strategies potentially targeting the

genomic aberrations that drive tumor behavior, offering the

unique opportunity to increase clinical benefit [6]. However, pre-

dicting treatment response to known oncogenic pathways is still

not straightforward, and future studies are warranted to deter-

mine the feasibility of this approach.

We next screened PDXs established for 92 patients with various

solid tumors against the same treatments that were administered

clinically and correlated patient outcomes with the responses in

corresponding models. Percent tumor growth inhibition (%TGI)

(which is commonly used to assess therapeutic efficacy in PDXs)

is calculated relative to the untreated control group. This ap-

proach is quite different from the criteria used to evaluate re-

sponse rates in the clinical setting, where control is not available,

and may therefore lead to an overestimation in some cases. To

more adequately assess antitumor drug efficacy in mice, we have

calculated control-independent %TR rate for each regimen

tested, and then converted %TR values to clinical outcomes

equivalent according to RECIST criteria [27].

Positive and negative predictive values provide a quantitative

way to assess whether a specific outcome in PDXs is likely to yield

the same outcome in the patient. Based on our data, positive and

negative predictive values calculated for PDX screenings were of a

magnitude rarely observed with any other type of in vitro testing.

Our study highlights the utility of this platform for drug screen-

ing in co-clinical trials, where drug studies in PDXs and patients

are evaluated in parallel [20, 28, 29], allowing rapid integration of

information from PDX experiments to human trials. These types

of studies will be particularly important for identifying bio-

markers allowing response prediction in patient subpopulations

using the established PDXs. Supporting this rationale, a growing

number of studies have demonstrated the value of PDXs for dis-

covering prospective biomarkers that warrant clinical validation

[8, 13, 18, 24, 25]. Furthermore, PDXs or PDX-derived short

term ex vivo cultures [10] can continue to predict responses in

pre-clinical drug screening long after a trial is completed, even if

the patient has succumbed to disease.

Although most of the PDX drug responses reliably correlated

with patient outcomes, in three cases, the patient’s tumor re-

sponded to treatment while the PDX was resistant (false nega-

tives). False negative responses may occur due to the differences

in absorption, distribution and pharmacokinetics of antitumor

agents between mice and humans [30, 31]. Mice may eliminate

certain compounds faster, causing underestimation of their clin-

ical efficacy. Future trials designed to determine the differences in

pharmacology of cancer therapeutics between mouse and human

may help to better forecast whether drug exposures needed for as-

sessment of preclinical efficacy could be achieved in mice.

Additionally, we observed fourteen cases where the patient’s tumor
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did not respond to treatment, while the corresponding PDX was

sensitive (false positives). This typically occurred when the duration

between PDX generation and drug testing was long and patients

received additional therapy before the treatment against which the

model was screened. Although the basis of drug-induced clonal dy-

namics and the speed with which it occurs is not yet understood, it

is possible that administration of other drugs allowed the out-

growth of tumor cell sub-populations that were intrinsically more

resistant to the new treatment, whereas the model established from

the original tumor remained sensitive. Nevertheless, although

PDXs may be unable to provide treatment-guidance for systemic

therapy administered immediately following surgery, we showed

only a modest decrease in predictive value and retention of high ac-

curacy even if the patient underwent subsequent treatments after

resection. Moreover, we have shown that PDXs retain the capacity

to identify viable treatments for recurrent disease appearing months

after the initial presentation, making it interesting to speculate that

these models may be useful in helping manage cancer as a chronic

disease in patients with long or recurring responses.

Although our data support PDXs as a valuable modality for

translational research, there are a number of challenges limit-

ing their broad application. One of the concerns is that estab-

lishing PDXs requires large quantities of fresh tumor tissue,

which sometimes may not be available. To address this chal-

lenge, we have conducted a number of engraftments using tis-

sue originating from biopsies (supplementary Figure S4,

available at Annals of Oncology online). While our data suggests

that biopsies have less variance in growth rates, which may be

attributed to lower heterogeneity, the engraftment rate, biolo-

gical features and clinical parameters of models established

from biopsies were comparable to surgical explants. However,

this observation may reflect the more aggressive, late-stage

tumors examined in this study, and it remains to be determined

whether small amounts of tissue from early-stage patients en-

graft and grow as readily. As molecular analysis of tumors be-

comes standard, the amount of tumor material available for

implantation decreases. While a number of promising

approaches [32] have enhanced the engraftment rate in mice,

the ability of tumors to engraft is not universal and PDX cannot

be generated for every patient [33].

It is also apparent that use of PDXs as a standard modality for

modeling human cancer has additional limitations, such as loss

of tumor microenvironment and immune-response [32, 34], se-

lection for clonal subpopulations different from the original

tumor [9, 26], differences in drug metabolism [30, 31] and cost-

effectiveness [33]. Although at the present time, tumorgrafts are

predominantly pharmaceutical research tools, with the dismal re-

sponse rates observed with repeated lines of traditional chemo-

therapy, the value of this tool in addressing the continuing

challenges in clinical oncology will likely increase over time.
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