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Abstract
Despite considerable progress made in improving therapeutic strategies, 

the overall survival for patients diagnosed with various cancer types remains 
low. Further, patients often cycle through multiple therapeutic options before 
finding an effective regimen for the specific malignancy being treated. A focus 
on building enhanced computational models, which prioritize therapeutic 
regimens based on a tumor’s complete molecular profile, will improve the 
patient experience and augment initial outcomes. In this study, we present 
an integrative analysis of multiple omic datasets coupled with phenotypic 
and therapeutic response profiles of Cytarabine from a cohort of primary 
AML tumors, and Olaparib from a cohort of Patient-Derived Xenograft 
(PDX) models of ovarian cancer. These analyses, termed Pharmaco-Pheno-
Multiomic (PPMO) Integration, established novel complex biomarker profiles 
that were used to accurately predict prospective therapeutic response profiles 
in cohorts of newly profiled AML and ovarian tumors. Results from the 
computational analyses also provide new insights into disease etiology and 
the mechanisms of therapeutic resistance. Collectively, this study provides 
proof-of-concept in the use of PPMO to establish highly accurate predictive 
models of therapeutic response, and the power of leveraging this method to 
unveil cancer disease mechanisms. Affiliation:
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Introduction
In 2014, the Food and Drug Administration (FDA) issued regulatory 

guidance on the use of companion diagnostic (CDx) assays, which led to a 
rapid increase in the development of such assays. By the start of 2022, the total 
number of CDx assays approved by the FDA grew to 50 [1]. The majority of 
approved CDx assays are associated with therapeutics that treat hematologic and 
solid malignancies, reflecting a recent shift towards the development of targeted 
therapies in the treatment of cancer. Immunohistochemistry (IHC) and in situ 
hybridization (ISH) assays were the central technologies leveraged in a CDx 
assay until 2011, when the first polymerase chain reaction (PCR)-based CDx was 
approved. Since then, the use of PCR-based CDx assays has become a mainstay in 
the field, with 16 PCR-based assays currently approved [1]. More recently, next 
generation sequencing (NGS) has emerged as a common platform used in CDx 
assays under development. The first NGS assay to be approved by the FDA was 
the FoundationFocus CDxBRCA Assay in 2016 (Foundation Medicine). This 
assay detects deleterious alterations in BRCA1 and BRCA2 genes in patients 
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with ovarian cancer and is used to assess whether a patient 
may be a candidate for treatment with Rucaparib (Rubraca). 
Since then, seven different NGS-based CDx assays have been 
approved by the FDA. Despite the increased adoption in the 
use of CDx platforms, all approved CDx assays are based on 
testing for the presence of one or two gene alterations as the 
basis for the prediction. Further, no CDx assay is available 
for non-targeted cytotoxic therapies, despite being dominant 
as front-line therapy options for most tumor indications 
[1]. Given the complex and dynamic interplay amongst 
dysfunctional biological pathways present in cancer cells, a 
more sophisticated approach to developing comprehensive 
CDx assays for all therapeutic strategies would increase 
prediction precision and broaden patient inclusion criteria. 
Approximately 300,000 people are diagnosed with Acute 
Myeloid Leukemia (AML) each year. Although considerable 
progress has been made over the past 3 decades in developing 
successful treatments for AML, overall survival remains 
unacceptably low (< 30%) [2]. Several AML therapeutic 
treatment strategies exist, including an induction therapy 
regimen and a consolidation therapy regimen for those 
patients in remission. In patients under the age of 60, induction 
therapy often involves treatment with Cytarabine (ara-C) and 
an anthracycline drug such as Daunorubicin (Daunomycin) 
or Idarubicin. Despite promising responses achieved during 
induction therapy, only 40-50% of patients achieve complete 
response, with younger patients responding more favorably 
[3]. Currently, no approved CDx is available to help predict a 
patient’s response profile to Cytarabine. This is, in large part, 
because Cytarabine is a non-targeted cytotoxic agent, and 
no single gene aberration is linked to response profiles. The 
overall survival of patients diagnosed with invasive epithelial 
ovarian cancer also remains low, with an average 5-year 
survival at less than 50% for all SEER stages combined 
[4]. The current initial treatment approach for patients with 
newly diagnosed advanced ovarian cancer includes the use 
of paclitaxel and carboplatin in combination with surgical 
cytoreduction. Remission is often achieved, but 80% of 
patients will have a recurrence within 3 years of remission 
[5]. Recent treatment advances include the use of poly(ADP)-
ribose polymerase (PARP) inhibitors, such as Olaparib. 
The use of the BRACAnalysis CDx (Myriad Genetics) is 
employed to identify patients suitable for treatment with 
Olaparib. The basis for this CDx assay is the presence of 
deleterious alterations in the BRCA1 and BRCA2 genes as a 
criterion for the use of Olaparib. This effectively eliminates 
any patient with an unaltered BRCA1/BRCA2 gene status 
from the use of Olaparib, even though evidence exists to 
support the use of Olaparib in certain patients with wild-
type (wt) BRCA status [6]. The development of a biomarker 
profile for PARP inhibitor response profiles, that broadens 
the molecular analysis, would expand inclusion criteria to a 
wider audience of patients that could benefit from treatment. 
In this study, we provide proof-of-concept for an integrative 

approach to building complex computational models that 
incorporate multiple omic datasets to reconstruct tumor 
cell biology and predict response/resistance profiles more 
broadly. We performed this analysis, termed PPMO, for non-
targeted (Cytarabine) and targeted (Olaparib) therapeutics, 
and in extremely heterogenous hematologic (AML) and solid 
(Ovarian) malignancies. The PPMO-based prediction models 
were able to accurately predict prospective therapeutic 
response profiles for subsequently investigated tumors. 
Further, the PPMO models provided supportive evidence 
of previously identified biomarkers and therapeutic targets 
and highlight several potentially tractable and previously 
unreported therapeutic targets.

Methods
Human Acute Myeloid Leukemia Specimens

AML patient specimens were obtained from the Stem 
Cell and Xenograft Core at the Perelman School of Medicine, 
University of Pennsylvania. The consent to collect and use 
human AML specimens for research was obtained under the 
protocol “Hematologic Malignancies Tissue Bank”, which is 
approved by the University of Pennsylvania’s Institutional 
Review Board (IRB protocol #703185).

Human Leukapheresis Sample Processing and 
Cryopreservation

Leukapheresis from AML patients were collected at the 
Perelman Center for Advanced Medicine, Cancer Center, 
Hospital of University of Pennsylvania, in pheresis bag and 
transported to the lab for further processing within 2 hours 
of sample collection. Briefly, cells were transferred in 50ml 
Falcon tubes (Fisher), counted using a Nexcelom Cell Counter 
(Nexcelom) and diluted with PBS 2% fetal bovine serum 
(Gemini Bio) to reach a concentration of 100 to 200 million 
cells/ml. After centrifugation, red blood cells were lysed 
using ammonium chloride (Stem Cell Technologies) and cells 
were washed and resuspended in PBS 2% FBS for counting. 
Cells were then aliquoted and frozen at an appropriate cell 
concentration in a mix 1:1 of PBS 2% FBS and 14% dimethyl 
sulfoxide (Fisher), 4% Hetastarch (NovaPlus), and 4% bovine 
serum albumin (Gemini Bio). Cell vials (Abdos) were placed 
at -80C overnight and transferred into liquid nitrogen freezer 
for long-term conservation.

Human Cells
All patient samples were procured after informed 

consent and deidentified in accordance with IRB-approved 
protocols. White blood cells were obtained via leukapheresis 
from AML patients in blast crisis. Mononuclear cells were 
separated by density gradient centrifugation, washed and 
then cryopreserved. Cells were stored in vapor phase 
liquid nitrogen until use for ex vivo assay (flow cytometry, 
cytotoxicity assays and molecular profiling).



Silberberg G, et al., Arch Clin Biomed Res 2023 
DOI:10.26502/acbr.50170321

Citation: Gilad Silberberg, Brandon Walling, Amy Wesa, Alessandra Audia, Ido Sloma, Yi Zeng, Guanghui Han, Jia Tang, Paige Pammer, A’ishah 
Bakayoko, Daniel Ciznadija, Bandana Vishwakarma, Yaron Mosesson, Marianna Zipeto, Michael Ritchie. Comparative Analysis of 
Global Hepatic Gene Expression in Adolescents and Adults with Non-alcoholic Fatty Liver Disease. Archives of Clinical and 
Biomedical Research 7 (2023): 86-105.

Volume 7 • Issue 1 88 

Flow Cytometry Method
One comprehensive 18-color panel of monoclonal 

antibodies was used to stain cells for AML characterization. 
The following surface antibodies were used in the panel 
(Supplementary Table 2): anti-CD14 BUV395 (clone M5E2), 
anti-CD4 BUV496 (clone RPA-T4), anti-CD34 BUV661 
(clone 581), anti-CD19 BUV737 (clone SJ25C1), anti-CD123 
BV421 (clone 9F5), anti-CD3 BV605 (clone SK7), anti-
CD38 BV650 (clone HIT2), anti-CD64 BV711 (clone 10.1), 
anti-CD13 BB515 (clone WM15), anti-CD11b BB700 (clone 
ICRF44), anti-CD7 PE (clone M-T701), anti-CD15 AF647 
(clone W6D3), all from BD Bioscience, and anti-CD45 
BV510 (clone HI30), anti-HLA-DR BV570 (clone L243), 
anti-CD56 PE-Dazzle594 (clone 5.1H11), anti-CD33 PE-
Cy7 (clone P67.7) and anti-CD117 APC-Cy7 (clone 104D2), 
all from Biolegend. In addition, a fixable viability dye in 
the FVS700 channel was used to exclude non-viable cells 
in the gating strategy. Prior to staining the patient samples, 
each antibody was titrated using an 8-point serial dilution 
beginning with twice the manufacturer’s recommended 
concentration. Separation index was calculated, and the 
optimal antibody amounts were determined. Fluorescence 
Minus One (FMO) controls and Fluorescence Minus X 
(FMX) controls were also prepared and analyzed during 
panel optimization to establish the optimal gating strategy 
and to set gates properly. 0.5 x 106 thawed, washed cells were 
plated per well and viability dye was added and incubated 
for 15 (± 5) minutes. Cells were washed twice in FACS stain 
buffer then blocked for 10-15 minutes with Fc block. Post 
blocking, conjugated antibodies were added and incubated, 
protected from light for 30-40 minutes, then washed in FACS 
stain buffer twice before resuspending in FluoroFix buffer 
(Biolegend). Cells were incubated for 20 minutes protected 
from light, and then washed once more in FACS stain buffer. 
Cells were resuspended in FACS stain buffer and stored at 
2-8°C, protected from light, until acquisition on the flow
cytometer.

Instrument Calibration and Compensation
A 5-laser, 26-parameter, Becton Dickinson FACS 

Symphony A3 (4-Blue, 3-Red, 7-Violet, 4-Gr, 6-UV, see 
Table x for cytometer configuration) with BD FACSDiva 
vxx software was used for sample acquisition. Prior to 
sample acquisition, the instrument was calibrated and fluidics 
were quality controlled using BD CS&T beads. Once it was 
confirmed that CS&T beads passed acceptance, compensation 
was performed to adjust for spectral overlap within each 
channel. Single-color stained beads were acquired on the 
cytometer, and compensation was calculated using the 
instrument software, and then applied to the samples. 

Flow Cytometry Data Collection and Analysis
Cytometer configuration is shown in supplementary table 

3. 500,00 viable cells were collected from each sample. FCS
files were exported and analyzed with BD Biosciences FlowJo
v10 software. Cells were first gated from SSC-A versus
FSC-A to exclude debris, then gated from FSC-H versus
FSC-A, then SSC-H versus SSC-A to include only singlets.
Then cells were gated from SSC-A versus Viability FVS700,
and negative cells gated to include only viable cells and to
exclude all dead cells. At this point, the gating strategy in
supplementary table 4 was used to identify CD45 blast cells,
AML blast cells, AML blast progenitor cells, AML blast
leukemic stem cells (LSC), AML monoblasts, leukocytes,
NK cells, T cells, Helper T cells, Cytotoxic T cells, and B
cells.

Cytotoxicity Assay
Primary patient leukapheresis specimens were thawed, 

washed twice in media, and counted using acridine 
orange and propidium iodide with Cellometer Auto2000 
(Nexcelom, Lawrence, MA). Cells were seeded in 96-well 
plates in Champion’s proprietary AML VitroScreen media. 
Cytarabine, prepared in DMSO stock solution, was serially 
diluted in AML VitroScreen media, or media alone and then 
added to wells in triplicates. Cells were incubated for 6 days 
in a 37℃ 5% CO2 humidified incubator. On day 6, Cell Titer 
Glo reagent (Promega) was equilibrated to room temperature, 
then added to each well and incubated for 10 minutes with 
shaking before plate reading. Luminescence was recorded 
using Infinite M Plex plate reader (Tecan). Cell viability IC50 
curves were generated from log transformed, normalized 
luminescent (RLU) readings with nonlinear regression (4PL 
curve fit) using Graph Pad Prism 8 to establish IC50, and  
R2 values.

In Vivo Pharmacology Studies
All methods were carried out in accordance with 

relevant guidelines and regulations for using animals 
in the study. All studies involving animals were reviewed 
and approved by the Institutional Animal Care and Use 
Committee at Champions Oncology, Inc. Tumor volumes 
are recorded for each experiment beginning seven to ten days 
after implantation into Nude mice. When tumors reach an 
average tumor volume of 150-300mm³ animals are matched 
by tumor volume into treatment or control groups to be used 
for dosing and dosing initiated on Day 0. Animals are visually 
examined daily. Tumor volumes are taken twice weekly. 
A final tumor volume is taken on the day study reaches 
endpoint. Animals are weighed twice weekly. Animals are 
weighed twice weekly. A final weight is taken on the day the 
study reaches end point or if animal is found moribund, if 
possible. The study endpoint is when the mean tumor volume 
of the control group (uncensored) reaches 1500mm³. If this 
occurs before Day 28, treatment groups and individual mice 
are dosed and measured up to Day 28. TGI is calculated as 1 
– (mean volume of treated tumors)/(mean volume of control
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tumors)) × 100%. Olaparib was dosed orally at 100 mg/kg 
once a day for 28 days.

Molecular Profiling
Stranded mRNA Library Preparation: Qualified RNA 

was used for library preparation using Illumina Stranded 
mRNA Prep ligation. First, mRNA was purified and captured 
with Oligo(dT) magnetic beads. Second, purified mRNA was 
fragmented and copied into first strand complimentary DNA 
(cDNA) using reverse transcriptase and random primers, 
in the following steps, dUTP replaced dTTP to form strand 
specific cDNA. In the final steps adenine (A) and thymine 
(T) bases were incorporated into fragment end and ligate
adapters. The resulting libraries were purified and selectively
amplified for sequencing.

Gene Quantification Pipeline: Rna-Seq raw reads were 
preprocessed with adapters and low quality bases trimming 
using Cutadapt [36], following by alignment to Hg19 human 
genome and GRCh37.p19 as a gene model by STAR aligner 
[37]. Genes counts were extracted by RSEM [38] followed by 
TMM depth normalization [39] and removal of known batch 
effects via ComBat [40]. Low coverage genes were removed 
and log TPM scores were calculated for every gene.

Exome Library Preparation: Extracted DNA was 
fragmented using provided enzyme in the kit (Agilent 
SureSelect XT HS2 DNA system), the fragmented DNA then 
went through End repair and dA-tailing followed by adaptor 
ligation to add molecular barcode. The barcoded library 
was purified, amplified, and followed by quality checks to 
make sure enough libraries were generated for hybridization 
using SureSelect Human All Exon V7 probe. The hybridized 
libraries were then captured using streptavidine-coated beads 
and amplified for sequencing. 

Low Coverage Variants Identification: To augment 
WES variant calling an amplicon approach was also applied 
on 54 genes using TruSight myeloid sequencing panel [41] 
(Illumina, CA) and paired-end sequencing runs performed on 
a MiSeq (Illumina) genome sequencer. Sequences obtained 
were analyzed by GATK best practices and annotated by 
Ensembl Variant Effect Predictor [42].

WES Variant Calling and Copy Number 
Identification: A comprehensive variant calling pipeline was 
used to overcome the lack of a match normal sample. Briefly, 
multiple callers were used for SNPs (Mutect, LoFreq and 
snp-strelka) and INDELs (indel-Strelka, Pindel and Scalpel) 
with a conjugated diploid cell line NA12878 as a reference 
sample. High quality variants with an agreement of two 
callers were qualified and known germlines with population 
prevalence’s in ExAc database [43] above 1% were excluded. 
Copy number were identified via Excavator [44] pipeline 
using NA12878 as the normal reference. 

Multi Omics Clustering: RNA-seq genes, proteomics 
and phosphor-proteomics blocks were used to cluster AML 
samples. For every block 2000 of the most variable genes/
proteins were selected and an integrative clustering analysis 
was applied using Bayesian latent variable identification via 
iClusterPlus [45] using gaussian priors, 180k burn in and 
300K draws and k=2-11. Hierarchal clustering of Latent 
variables and average silhouette used to identify k=3 as the 
most robust number of clusters. 

Proteomics and Phosphoproteomics Profiling
Sample Lysis: Total 47 were received. About 30M AML 

cells were mixed with 500 µL of lysis buffer that is 9M urea, 
pH 8.5 20mM HEPEs. Samples were water bath sonicated 
for 30mins follow by spinning in the high-speed centrifuge 
for 10mins at 14,000 rpm. To complete the lysis, samples 
were supersonicated for 30 seconds at 20% amplitude 
(Qsonica, Q500 Sonicator) Spin down samples with tabletop 
centrifuge. Protein concentration of samples were measured 
by BCA assay (Cat No: A53225, ThermoFisher Scientific) 
post sample lysis. 

Proteomics Sample Preparation: About 2 mg of each 
sample was taken from the lysate and normalize to the same 
volume with lysis buffer. Samples were reduced in 10 mM 
DTT for 25 min at 60 °C, and then reduced samples were 
alkylated in 20 mM IAM in dark environment for 20 mins 
at room temperature. Excess IAM in the samples were 
quenched by adding 100 mM DTT solutions. DI water and 
HEPE pH 8.5 were added to each sample so that final urea 
concentration was diluted to 1.6 M, and final pH about 8 for 
enzymatic digestion. 40 µg of Try/LysC (Cat No: A41007, 
ThermoFisher Scientific) were added to each sample. Samples 
were incubated overnight at 37 °C for 12 hours. Additional 
10 µg of Tryp/LysC was added to each sample the next day 
and samples were incubated for 4 more hours to complete the 
enzymatic digestion. 

Peptide Cleanup: 10% TFA were added into each 
digested peptides samples and form a final concentration of 
1% TFA. pH was tested and acidic. Then, acidified samples 
went through 100 mg SEK PAK column (Cat No: 60108-
302, ThermoFisher Scientific) for desalting. 25% of desalted 
peptides aliquot (0.5mg of equivalent protein content) of each 
sample was taken for normal DIA analysis, and the remaining 
75% of desalted peptides of each sample (1.5mg of equivalent 
protein content) was reserved for phospho-DIA analysis. 
Within normal DIA sample, 80% of each sample (0.4mg of 
equivalent protein content) were taken to pool together for 
peptide fractionation; remaining 20% of each sample was 
dried and stored for LC/MS analysis.

Phospho-Peptides Enrichment: Reserved peptides 
were enriched with High-SelectTM TiO2 phosphopeptides 
enrichment kit from Thermo Scientific (Cat No: A32993, 
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ThermoFisher Scientific) using protocol from Thermo 
Scientific with the exception for the elution buffer (80% ACN, 
5% Ammonium Hydroxyl). Within phospho-DIA enriched 
samples, 80% of each sample (1.2mg of equivalent protein 
content) were taken to pool together for peptide fractionation; 
remaining 20% of each sample (0.3mg of equivalent protein 
content) was dried and stored for LC/MS analysis. 

Peptide Fractionation: Both the normal DIA and 
phospho-DIA library composite samples were fractionated 
into 96 fractions with a high pH reverse phase offline HPLC 
fractionator (VanquishTM, ThermoFisher Scientific). Mobile 
phase A is DI H2O with 20 mM Formic Acetate, pH 9.3; 
mobile phase B is Acetonitrile (OptimaTM, LC/MS grade, 
Fisher ChemicalTM) with 20mM Formic Acetate, pH 9.3. 
Gradient of separation is displayed in Supplementary Table 
6. 96 fractions were then combined into 24 fractions and
ready for Liquid Chromatography Mass Spectrometry (LC/
MS) analysis.

LC/MS Analysis: All fractionated samples were 
analyzed by nano flow HPLC (Ultimate 3000, Thermo Fisher 
Scientific) followed by Thermo Orbitrap Mass Spectrometer 
(QE HF-X). Nanospray FlexTM Ion Source (Thermo Fisher 
Scientific) was equipped with Column Oven (PRSO-V2, 
Sonation) to heat up the nano column (PicoFrit, 100 µm x 
250 mm x 15 µm tip, New Objective) for peptide separation. 
The nano LC method is water acetonitrile based 150 minutes 
long with 0.25 µL/min flowrate. For each library fractions, 
all peptides were first engaged on a trap column (Cat. No: 
160454, Thermo Fisher) and then were delivered to the 

Marker Fluorophore Clone Supplier

CD14 BUV395 M5E2 BD Biosciences

CD4 BUV496 RPA-T4 BD Biosciences

CD34 BUV661 581 BD Biosciences

CD19 BUV737 SJ25C1 BD Biosciences

CD123 BV421 9F5 BD Biosciences

CD45 BV510 HI30 BioLegend

HLA-DR BV570 L243 BioLegend

CD3 BV605 SK7 BD Biosciences

CD38 BV650 HIT2 BD Biosciences

CD64 BV711 10.1 BD Biosciences

CD13 BB515 WM15 BD Biosciences

CD11b BB700 ICRF44 BD Biosciences

CD7 PE M-T701 BD Biosciences

CD56 PE-Dazzle594 5.1H11 BioLegend

CD33 PE-Cy7 P67.6 BioLegend

CD15 (SSEA-1) AF647 W6D3 BioLegend

Viability FVS700 NA BD Biosciences

CD117 APC-Cy7 104D2 BioLegend

Table 1: Panel List.

Time[min] Flow[ml/min] %B
0.00 0.500 2.0
1.00 0.500 6.0
12.00 0.500 20.0
30.00 0.500 28.0
50.00 0.500 65.0
53.00 0.500 98.0
57.00 0.500 98.0
59.00 0.500 2.0
60.00 0.500 2.0

Table 2: High pH Reverse Phase HPLC Fractionation Gradient 
Information.

Time[min] Flow[µl/min] %B
0 0.25 2

3 0.25 2

3.1 0.25 2

8 0.25 4

98 0.25 35

128 0.25 65

129 0.25 100

133 0.25 100

134 0.25 2

140 0.25 2

150 0.25 2

Table 3: nanoLC-MS Gradient Information.

Segment 1
(400 – 800 m/z, IW 15 m/z, Overlap 1 m/z)

399.5 – 415.5 609.5 – 625.5
414.5 – 430.5 624.5 – 640.5
429.5 – 445.5 639.5 – 655.5
444.5 – 460.5 654.5 – 670.5
459.5 – 475.5 669.5 – 685.5
474.5 – 490.5 684.5 – 700.5
489.5 – 505.5 699.5 – 715.5
504.5 – 520.5 714.5 – 730.5
519.5 – 535.5 729.5 – 745.5
534.5 – 550.5 744.5 – 760.5
549.5 – 565.5 759.5 – 775.5
564.5 – 580.5 774.5 – 790.5
579.5 – 595.5 789.5 – 800.5
594.5 – 610.5

Table 4: DIA segment I Precursor Scan Range Information.

separation nano column by the mobile phase. A specific of 
gradient information was indicated in Supplementary Table 
7. For DDA library construction, a DIA library specific
DDA MS2-based mass spectrometry method on Eclipse
was used to sequence fractionated peptides that were eluted
from the nano column. For the full MS, 120,000 resolution
was used with the scan range of 375 m/z – 1500 m/z. For
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the dd-MS (MS2), 15,000 resolution was used, and Isolation 
window is 1.6 Da. ‘Standard’ AGC target and ‘Auto’ Max 
Ion Injection Time (Max IT) were selected for both MS1 and 
MS2 acquisition. Collision Energy (NCE) was set to 35%, 
and total cycle time is 1 sec. For DIA analytical samples, a 
high-resolution full MS scan followed by two segment DIA 
methods was used for the DIA data acquisition. For the full 
MS scan, 120,000 resolution was used for the range of 400 
m/z – 1200 m/z with ‘Standard’ AGC target and 50 ms Max 
IT. For both DIA segments, details of isolation windows (IW) 
and precursor mass range are shown in Supplementary Table 
8 & Supplementary Table 9. For DIA fragments scan, 30,000 
resolution was used for the range of 110 m/z – 1,800 m/z with 
‘Standard’ AGC target and ‘Auto’ Max IT.

Bioinformatic Analysis Pipeline Overview

This process is based on the sample data generated 
from a high-resolution mass spectrometer. DDA data was 
identified by Andromeda search engine within MaxQuant, 
and Spectronaut™ used identification results for spectral 
library construction. MaxQuant was used for identification of 
DDA data, served as a spectrum library for subsequent DIA 
analysis. MaxQuant was also used to localize Phosphosites 
for phosphopeptides. The analysis used raw data as input 
files and set corresponding parameters and human databases 
(UP000005640), then performed identification and 
quantitative analysis. The identified peptides satisfied FDR 
<=1% will be used to construct the final spectral library. For 
this DIA dataset, Spectronaut™ was used to construct spectral 
library information to complete deconvolution and extraction, 
and then mProphet algorithm was used to complete analytical 
quality control (1% FDR) to obtain reliable quantitative 
results. GO, COG, Pathway functional annotation analysis 
and time series analysis were also performed in above 
pipeline. DIA and phospho-DIA quantification data was 
first processed by dataProcess function in MSstats package, 
where equalize medians normalization and Tukey's median 
polish summarization were used as default. MStats, which 
core algorithm is linear mixed effect model, processed DIA 
and phospho-DIA quantification result data according to 

the predefined comparison group, and then performed the 
significance test based on the model. Thereafter, differential 
protein and phospho-proteins screening was performed, 
and fold change ≥ 2 and adj p-value < 0.05 was defined as 
significant difference. Based on the quantitative comparison 
results, the differential proteins and phospho-proteins 
between comparison groups were found, and finally function 
enrichment analysis, protein-protein interaction (PPI) and 
subcellular localization analysis of the differential proteins 
were performed. Proteomics data were normalized by 
variance stabilizing transformation, and missing values were 
imputed using a bayesian ('bpca') or a left-censored random 
draw ('MinProb') method by the R 'DEP' package [46]. 

Kinase Activity Calculation
Kinase activity was calculated from the phosphoproteomics 

data by the ssGSEA algorithm [19847166]. Known 
phosphorylation links were compiled from 3 databases 
("Signor" [31665520], "PhosphositePlus" [31345222] and 
"PDTs" [https://doi.org/10.1038/s41587-019-0391-9]), and 
were used as gene sets. The consolidated list consisted of 
435 kinases and links to 11,022 phosphorylation substrates. 
The enrichment analysis was applied over our phospho-
proteomics data using the consolidated list and kinases with 
identical targets in the data were collapsed, yielding 184 
kinase entities. Enrichment scores were mean centered and 
normalized within each set across the samples.
Multi Omics Analyses

The input data consisted of 6 blocks: RNA expression, 
proteomics, kinase activity, mutated genes, genes with copy-
number variations (CNVs) and cell sorting data. Mutated 
genes and genes with CNVs were included in downstream 
analysis only if they were present in the Cancer Gene Census 
(COSMIC) [https://cancer.sanger.ac.uk/census]. Features 
from numeric blocks (RNA, proteomics and kinase activity) 
were filtered by variance, with the threshold: min("median 
peak", median + MAD(gene variance)), where "median peak" 
is defined as 2*median (gene variance) - min(gene variance). 
The feature counts before and after filtering are shown 
in figure 1. Multi-omics data factorization and modelling 
was performed by sparse partial least squares discriminant 
analysis (sPLS-DA), implemented in the "mixOmics" R 
package [29099853]. To select features from each block, 
which optimize discrimination between cytarabine responders 
(IC50 < 100) and non-responders (IC50 > 100), a tuning step 
was run over series of counts, where each iteration attempts 
to optimize the discrimination performance using a number 
of features equal to the input counts. Thus, for each block, 
discrimination performance was measured on 15, n/10 and 
n/7 features. For RNA and proteomics 30 and 70 features 
were also included. The parameters used for classification 
error estimation during training were Mahalanobis distance 
as a distance metric, balanced error rate (BER), Horst 

Segment 2
(800 – 1200 m/z, IW 25 m/z, Overlap 1 m/z)

799.5 – 825.5 999.5 – 1025.5

824.5 – 850.5 1024.5 – 1050.5

849.5 – 875.5 1049.5 – 1075.5

874.5 – 900.5 1074.5 – 1100.5

899.5 – 925.5 1099.5 – 1125.5

924.5 – 950.5 1024.5 – 1150.5

949.5 – 975.5 1049.5 – 1175.5

974.5 – 1000.5 1074.5 – 1200.5

Table 5: DIA Segment 2 Precursor Scan Range Information.

https://www.ncbi.nlm.nih.gov/pubmed/19847166
https://www.ncbi.nlm.nih.gov/pubmed/31665520
https://www.ncbi.nlm.nih.gov/pubmed/31345222
https://doi.org/10.1038/s41587-019-0391-9
https://www.ncbi.nlm.nih.gov/pubmed/29099853
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optimization scheme, and leave-one-out (loo) validation. 
The inter-block association matrix was set to "null for 
discrimination purposes, and to "full" for feature correlation 
and network reconstruction. The optimal number of features 
per block per component are shown in table 1.

Gene Network
Mutual information (MI) matrix was calculated over 

values of features selected by sPLS-DA, along with 
cytarabine IC50 values by parallel estimation of the MI of 
vectors using entropy estimates from K-nearest neighbor 
distances [https://pubmed.ncbi.nlm.nih.gov/15244698/]. The 
gene network was then calculated by Context Likelihood or 
Relatedness (CLR algorithm, https://pubmed.ncbi.nlm.nih.
gov/17214507/). 

Results
AML Patient Characteristics

Primary samples (derived from a leukapheresis procedure) 
from 23 patients diagnosed with AML were collected. The 
patients presented with a wide distribution of AML model 
classes, as determined by the French-American-British 
(FAB) classification, with forty three percent of patients being 
treatment naïve (Figure 1a-b, Supplementary Table 1). A 
wide distribution of age and disease status was also observed 
amongst the cohort of patients (Figure 1c-d, Supplementary 
Table 1). Pathogenic mutations in IDH1/2, FLT3, NPM1, 
CUX1, RUNX1, KIT, DNMT3A, STAG2, and TP53 were 
represented across the patient landscape, highlighting 
molecular diversity of this cohort (Supplementary Table 
1). A similarity network fusion (SNF) clustering analysis 
of RNA and protein expression revealed 4 clusters within 
the patient cohort, with clusters 1 & 2 exhibiting largely 
abnormal cytogenetics. No other major discriminating factors 
were easily observed between the clusters generated from 
this SNF analysis, demonstrating molecular heterogeneity 
and diversity amongst all tumors within this cohort (Figure 
1e). Further, the superficial SNF did not establish a cluster 
association with cytarabine response profiles. Collectively, 
these results demonstrate a diversity in this cohort of tumor 
samples and highlights the need for complex molecular and 
phenotypic analysis to reveal the underpinnings of cytarabine 
resistance and build a response biomarker profile.

AML Phenotyping
Given the complex heterogeneity of cell populations 

observed amongst different AML tumors, the AML samples 
were first subjected to extensive cell diversity phenotyping 
via flow cytometry. This included a comprehensive AML-
specific 19-channel flow cytometry panel performed under 
Good Clinical Laboratory Practice (GCLP) guidelines 
(called PhenoSeek) (Supplementary Table 2 and 3). The 
gating strategy for this flow panel enables the identification 

Figure 1: Clinical characteristic of the patients and primary AML 
samples are denoted, including (a) the distribution of FAB classes 
across all samples, (b) the distribution of treatment naïve and 
pretreated tumors, (c) the age distribution of all patients the samples 
were collected from, and (d) the disease status of the primary 
samples. (e) Similarity network fusion (SNF) analysis of combined 
RNA (upper heatmap panel) and protein expression (lower heatmap 
panel) data obtained from AML samples (f) representative example 
of the flow cytometry gating strategy for PhenoSeek. (g) ex vivo-
based IC50 values for cytarabine treatment were acquired in primary 
AML samples and plotted as a mean with SEM for each sample. 
(h) The acquisition of Cytarabine-mediated IC50 curves across all
patients' samples are shown. For instances where two different IC50
values were acquired, different tests are shown in green or blue. (i)
The mean IC50 value of Cytarabine for each sample is plotted and
models are binarized as responders or non-responders based on an
IC50 cutoff of 100 nM.

of 35 different cellular subsets (Figure 1f). A diversity of 
cell populations across all patients are observed, and a 
representative diversity of a select number of cell populations 
is presented in Supplementary Figure 1a-c. The primary AML 
samples were also subjected to WES, RNAseq, quantitative 
(Q)-proteomics for protein expression, and Phosphorylation 
(P)-proteomics to establish the phosphorylation state of each 

https://pubmed.ncbi.nlm.nih.gov/17214507/
https://pubmed.ncbi.nlm.nih.gov/17214507/


Silberberg G, et al., Arch Clin Biomed Res 2023 
DOI:10.26502/acbr.50170321

Citation: Gilad Silberberg, Brandon Walling, Amy Wesa, Alessandra Audia, Ido Sloma, Yi Zeng, Guanghui Han, Jia Tang, Paige Pammer, A’ishah 
Bakayoko, Daniel Ciznadija, Bandana Vishwakarma, Yaron Mosesson, Marianna Zipeto, Michael Ritchie. Comparative Analysis of 
Global Hepatic Gene Expression in Adolescents and Adults with Non-alcoholic Fatty Liver Disease. Archives of Clinical and 
Biomedical Research 7 (2023): 86-105.

Volume 7 • Issue 1 93 

protein. Kinase activity within the tumors was established 
using a single sample Gene Set Enrichment Analysis 
(ssGSEA). Importantly, we find only a 17.3% correlation 
between RNA expression and protein expression amongst 
these tumor samples (Supplementary Figure 2a). Further, we 
find a very low correlation between protein expression and 
kinase activity, reinforcing the different post-translational 
processes that regulate protein activity (Supplementary Figure 
2b). Collectively, these results highlight the advantage to 
multiomic integration analysis when using omics to reconstruct 
a tumor’s molecular makeup, and the shortcomings of relying 
on only RNA expression or protein expression to understand 
protein or pathway activity. These primary samples were 
also subjected to a primary ex vivo cytotoxicity assay to 
establish sensitivity and resistance status to cytarabine. The 
ex vivo protocol subjects the patient samples to short term 
culture (<10 days), to ensure lack of genetic drift, and clonal 
selection within the samples. This type of primary explant 
culture is necessary due to the propensity for AML samples 
to rapidly differentiate and clonally select [7-9]. The assay 
demonstrated strong reproducibility across the models tested 
and provided a suitable range of sensitivity to cytarabine 
treatment ((Figure 1g-h). Cytarabine responses measured in 
the patient samples were binarized into ‘responder’ (R) and 
‘non-responder’ (NR) categories using an IC50 cutoff of 100 
nM (Figure 1i).

Integrated Phenotype & Omics Analysis of 
Cytarabine Response in Primary AML

To study the molecular mechanism underlying cytarabine 

response and identify candidate biomarkers, Data Integration 
Analysis for Biomarker discovery using Latent Components 
(DIABLO) [10], based on partial least squares discriminant 
analysis (PLS-DA), was applied on all omics blocks 
(Supplementary Figure 3a-b). We first performed tuning 
steps to assess the required number of latent variables, and the 
optimal number of features to be selected from each block in 
each latent variable (see Materials and Methods). Using these 
parameters, 2 latent variables were calculated for each block. 
We observed that, as expected, latent variables of different 
blocks tended to co-cluster by components (Figure 2a). 
Importantly, Component 1 (Comp 1-Cytarabine) was strongly 
correlated with cytarabine sensitivity, (r = 0.519 kinase block, 
0.702 mutation block, 0.822 protein block, and 0.78 RNA 
block (Supplementary Figure 3c)). Hierarchical clustering of 
all Comp 1-Cytarabine features differentiates response groups 
clearly (Figure 2b). The loadings of each feature on Comp 
1-Cytarabine also indicate the strength of their relationships
with cytarabine response. Features with the highest absolute
loadings in their blocks include AML blasts (CD34+) with
higher levels in R, CD56+ cells with higher levels in NR,
CNVs in MYC (more frequent in NR), mutant RNF213
(more frequent in NR), Pyruvate Dehydrogenase Kinase
(PDK)-family kinase activity (higher in R), SAM domain
and HD domain-containing protein 1 (SAMHD1) protein
(higher in NR), Serpin Family B Member 2 (SERPINB2)
RNA (higher in NR), Methyltransferase-like 7B (METTL7B)
RNA (higher in NR), and Small Integral Membrane Protein
24 (SIMM24) Protein (higher in NR), among others (Figure
2c). In most omics blocks, the first 2 variates were able to

Supplementary Figure 1: a. the summary of PhenoSeek analysis for AML Blasts, Progenitor Blast, LSC Blasts and Monoblasts are show for 
each sample are shown. The distribution of CD123+ (b) and CD117+ (c) LSCs across all samples are shown.
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Supplementary Figure 2: a. Correlations between proteins and their transcripts are positive and significant only for 17.3% of genes. b. 
Correlations between kinase activities and their expression levels. Positive correlations suggest the activity is driven by the protein expression.
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Model
FAB 

classification/
WHO subtype

Cytogenetics
% blasts 

(peripheral 
blood)

White blood 
cell count 

(x109/L)

Platelet 
count 

(x103/ml)

CD34 
status

IDH1/2 
status

FLT3 
status

NPM 
status

Diagnosis
Treatment 

history
Age Gender Ethnicity

CTG-2227
M4 

(myelomonocytic)
Not available 89 288 51 CD34+

IDH1 
mutant 

(R132H)

ITD 
mutant

mut Relapsed Pretreated 59 F Caucasian

CTG-2229
M1 (without 
maturation)

46, XY, del(2)
(p13p23), t(4;13)
(q31;q34), add(4)

(q25), del(6)
(q13q25), t(9;22)

(q34;q11.2), 
del(10)(q24), 
add(16)(q24) 

[20]

95 134 11
CD34+ 
bright

IDH1 
mutant 

(R132C)
Wild type

Wild 
type

Refractory Pretreated 53 M Caucasian

CTG-2232 NOS Normal
Not 

available
431 0

Not 
available

Wild type
ITD 

mutant
mut De novo Naïve 54 F Caucasian

CTG-2233
AML-MLD; prior 

MDS/MPN

47, XX, inv(10)
(p11.2q21.2)
c, +13 [6]/46, 
XX, inv(10)

(p11.2q21.2)
c [14]

21 128 25

CD34+ 
small 

subset/
variable

IDH2 
mutant 

(R140Q)

ITD 
mutant

Wild 
type

Secondary Pretreated 75 F
Not 

available

CTG-2234 NOS Normal 92 96 38 CD34+ Wild type
ITD 

mutant
mut De novo Naïve 39 M Caucasian

CTG-2235
AML-MLD; prior 

MPN
46, XY, del(20)

(q11.2q13.1) [20]
89 155 43 CD34+ Wild type Wild type

Wild 
type

Secondary Pretreated 66 M Caucasian

CTG-2236 Biphenotypic

46, XY, der(7)
t(7;13)(q22;q13) 

[13]/48, idem, +9, 
+13 [7]/47, XY, 
+12 [1]/48, XY, 

+12, +13 [1]

Not 
available

246
Not 

available
CD34+ 
bright

Not 
available

ITD 
mutant

Wild 
type

Not 
available

Naïve 75 M
Not 

available

CTG-2238
M4 

(myelomonocytic)
Normal 89 180 48 CD34+ Wild type

ITD 
mutant

Wild 
type

De novo Naïve 55 M Caucasian

CTG-2239 NOS Normal 96 264 79

CD34+ 
small 

subset/
variable

Wild type
Not 

available
mut De novo Naïve 79 M

Black or 
African 

American

CTG-2240
AML (11q23 

abnormalities)

46, XY, t(9;11)
(p22;q23), 

add(10)(q24) 
[5]/46, XY [5]

91 109 99 CD34- Wild type Wild type
Wild 
type

De novo Naïve 75 M
Not 

available

CTG-2453
AML-MLD; prior 

MDS
Normal 89 162 37 CD34+ Wild type

Non-ITD 
mutant 

(V579A)
mut

Secondary; 
refractory

Pretreated
Not 

available
M

Not 
available

CTG-2456 NOS
46, XX, del(7)
(q22q36) [15]

75 179 393 CD34+ Wild type Wild type
Wild 
type

De novo Pretreated
Not 

available
F Caucasian

Supplementary Table 1: Clinical and Molecular overview of the AML patient cohort and tumor samples collected.
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CTG-2457 NOS

44, XY, 
der(3)t(3;11)

(p21;q13), del(5)
(q?15q?34), 
del(6)(q12), 
der(7)t(6;7)

(q12;p15), -11, 
der(17)t(11;17)
(p11.2;p11.2), 

-18 [11]/44, 
idem, -del(6)

(q12), +i(6)(p10) 
[5]/44, idem, 

-Y, +i(Y)(q10), 
-del(6)(q12), 
+i(6)(p10) [4]

60 97 51 CD34+ Wild type Wild type
Wild 
type

De novo Naïve
Not 

available
M Caucasian

CTG-2700
M2 (with 

maturation)
45, X, -Y [5]/46, 

XY [3]
85 96 45

Not 
available

Not 
available

Wild type mut De novo Pretreated
Not 

available
M Caucasian

CTG-2701
M5 (monocytic; 
M5a and M5b)

Normal 40 166 29
CD34+ 

dim
Not 

available
ITD 

mutant
mut De novo Naïve

Not 
available

M Caucasian

CTG-2702
M4 

(myelomonocytic)
46, X, -Y, +8 

[13]/46, XY [2]
38 149 505

Not 
available

Not 
available

Wild type N/A Relapsed Pretreated
Not 

available
M Caucasian

CTG-2704
M1 (without 
maturation)

Normal 82 143 33 CD34-
Not 

available
ITD 

mutant
N/A De novo Naïve

Not 
available

F Caucasian

CTG-2774 Not available Normal 13.6 64 106 CD34- Wild type Wild type N/A Recurrent Pretreated 65 M Caucasian

CTG-2775
AML-MLD; prior 

MPN
47, XY, +6 

[6]/46XY [15]
31.5 39 16

CD34+ 
partial/
variable

Not 
available

Not 
available

N/A Secondary Pretreated 64 M
Not 

available

CTG-3438
M4 

(myelomonocytic)
Normal 66 50 20 CD34+ Wild type Wild type

Wild 
type

Relapsed Pretreated 62 F Caucasian

CTG-3439
Not specified 
(prior MDS)

Normal 67 218 55
CD34+ 
variable

Wild type
ITD 

mutant
Wild 
type

Secondary Pretreated 64 M Caucasian

CTG-3441
M1 (without 
maturation)

Not available 96 186 N/A CD34- Wild type
ITD 

mutant
mut De novo Pretreated 80 M Caucasian

CTG-3679
M0 (minimally 
differentiated)

46, XX, i(17)
(q10) [14]/46, 

XX [6]
71 256 N/A CD34+ Wild type

Non-ITD 
mutant 
(T582_

E598dup)

Wild 
type

De novo Naïve 54 F Caucasian

Cell Subset Parent Immunophenotype

CD45 blast Viable SSClow, CD45low 

AML blast CD45 blast CD34+CD33-

AML blast progenitor AML blast CD34+CD38+

AML blast progenitor markers AML blast progenitor CD123+

AML blast LSC AML blast CD34+CD38-

AML blast, LSC markers AML blast LSC CD117+, CD123+

CD45 blast markers CD45 blast CD4+, CD7+, CD11b+, CD13+, CD14+, CD15+, CD56+, CD64+, HLA-DR+, CD19+

AML monoblast CD45 blast CD33+

AML monoblast markers AML monoblast CD4+, CD7+, CD11b+, CD13+, CD14+, CD15+, CD56+, CD64+, HLA-DR+, CD19+

Leukocytes Viable CD45+/hi

NK cells CD45+/hi CD3-CD56+

T cells CD45+/hi CD3+CD19-

Helper T cells CD3+CD19- CD3+CD4+

Cytotoxic T cells CD3+CD19- CD3+CD4-

B cells CD45+/hi CD3-CD19+

Supplementary Table 2: Phenoseek Gating Strategy.
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discriminate well between the response classes, where the 
proteomics block variate 1 excelled (Supplementary Figure 
3a). A Functional enrichment analysis calculated for proteins 
and transcripts ranked by their absolute Comp1-cytarabine 
loadings revealed enrichment in fatty acid metabolism, 
among others (Supplementary Figure 3d).

The strongest correlations between Comp 1-cytarabine 
features in R-associated tumors revealed positive correlations 
between CD34+ cell enrichment and several features, 
including higher kinase activity of PDK family of proteins, 
ETS-Related Gene (ERG) protein expression, and Epithelial 
growth factor-like 7 (EGFL7) RNA expression (Figure 
2d). In NR-associated tumors, strong negative correlations 
between CD34+ cell populations and SAMHD1 protein 
expression, Aldehyde dehydrogenase 3B1 (ALDH3B1) 

protein expression, CCAAT enhancer binding protein gamma
(CEBPB) protein expression, and leukocyte immunoglobulin-
like receptor subfamily B4 (LILRB4) RNA expression was
observed (Figure 2d). Strong positive correlations between
mutations in RNF213 and poly(ADP-ribose) polymerase 4
(PARP4) protein expression and LILRB4 RNA expression

Figure 2: (a) Pairwise correlations between latent variables 
(components) calculated for the different omics blocks, and 
cytarabine response (shown in white in the row/column legends). 
Dots indicate significant correlations (FDR < 0.1, see figure S7C). 
The first component of all blocks is strongly correlated with 
cytarabine response. (b) Clustering of omic blocks contained within 
Comp 1-Cytarabine. (c) Features with the highest contribution to 
component 1 of each omics block. (d) Top correlations (r >= 0.8 / 
r <= -0.8) between features contributing to component 1, between 
and within omics blocks (inside the circle). Lines outside the circle 
indicate the features expression level for the responders and non-
responder's groups, where distance from the circle corresponds 
to expression level. (e) A Context Likelihood or Relatedness 
network (CLR) calculated over multi-omics features from Comp 
1-Cytarabine, along with cytarabine response IC50. Shown here is
a 1-neighborhood subgraph around cytarabine response, filtered for
strongest (edge weight > 2) and significant (correlation FDR < 0.05)
relationships. Edge thickness indicates interaction strength (weight).

Excitation Emission Range

UV laser - 355

378/29

515/30

586/15

670/30

740/35

820/60

Violet laser - 405

431/28

525/50

586/15

610/20

670/30

710/50

780/60

Argon blue laser - 488

515/20

610/20

710/50

780/60

Yellow green laser - 561

586/15

610/20

670/30

780/60

Red laser - 637

670/30

710/50

780/60

Supplementary Table 3: Phenoseek Cytometer Configuration.
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was also observed in tumors with NR cytarabine profiles 
(Figure 2d). Context Likelihood or Relatedness (CLR) was 
used to reconstruct the regulatory network over multi-omics 
features from Comp 1-Cyarabine, along with cytarabine 
response (IC50), based on mutual information (Figure 2e). 
This network represents the pan-omics molecular signature 
underlying/determining cytarabine response predisposition, 
as well as the interplay among them. The most strongly linked 
direct neighbors of the cytarabine response profile include 
known oncogenes and prognostic markers of AML, including 
Midkine (MDK) RNA [11], ERG protein [12], SERPINB2 
RNA [13], and Serglycan (SRGN) RNA [14], among others 
(Figure 2e). The 2-neighborhood subgraph including a more 
extensive features network (Figure S4) features several 
additional known oncogenes and prognostic markers for 
AML, including METTL7B RNA [15], LILRB4 RNA [16], 
SAMHD1 protein [17, 18] and EGFR7 [19]. 

Ovarian Patient Characteristics and Olaparib 
Profiling

Primary ovarian samples (derived from biopsy or 
surgical resection) from 24 patients diagnosed with ovarian 
cancer were collected and used to establish Patient-Derived 
Xenograft (PDX) models (Supplementary table 5). Most 
samples were established from metastatic lesions (Figure 3a) 
and from a wide distribution of patient ages (Figure 3b). 16 
of the patients were pretreated with platinum-based therapy 
regimens (Figure 3c) and most were of an advanced stage 
(Figure 3d). The PDX models were also subjected to WES, 
RNAseq, Q-proteomics and P-proteomics. Kinase activity 
within the tumors was established using ssGSEA. In contrast 
to the AML cohort, we find a higher correlation (86%) 
between RNA expression and protein expression amongst 
these tumor samples (Supplementary Figure 5a). However, 
we find a very low correlation between protein expression 
and kinase activity (Supplementary Figure 5b). A similarity 
network fusion (SNF) clustering analysis of RNA and 
protein expression revealed 3 major transcriptional subtypes 
within this ovarian cancer cohort (Figure 3e). BRCA1 and 
BRCA2 mutational status was represented broadly across 
all three transcriptional subtypes, with no other phenotypic 
characteristic associating strongly with any of the clusters 
(Figure 3e). These PDX models were also subjected to a 
subcutaneous in vivo efficacy to establish sensitivity and 
resistance status to Olaparib. Tumor growth inhibition (TGI) 
measurements related to Olaparib treatment fell within a 
range of response, providing an effective dataset for a PPMO 
integration (Figure 3f). 

Integrated Omics Analysis of Olaparib Response in 
Ovarian PDX

To study the molecular mechanism underlying Olaparib 
response and identify candidate biomarkers, PPMO analysis 

Supplementary Figure 3: a. Plots of latent variables 1,2 for 
each omics block. Responders are shown in orange triangles, 
and non-responders in blue circles. b. Plots for weighted means 
of latent variables 1,2 from all omics blocks. c. Scatter plots and 
correlations between the first component of the different blocks 
and cytarabine IC50. The vertical red line indicates the response 
criterion. d. Functional enrichment analysis calculated for proteins 
and transcripts ranked by their absolute Comp1 loadings. The effect 
size is measured in area under curve (AUC). Terms with AUC > 
0.65 and adjusted-p < 0.1 are shown. Blue: proportion of genes with 
negative loadings. Red: proportion of genes with positive loadings.
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this analysis (Comp 1-Olaparib) was strongly correlated 
with Olaparib sensitivity. Hierarchical clustering of all 
Comp 1-Olaparib features differentiates response groups 
clearly (Figure 4b). The loadings of each feature on Comp 
1-Olaparib also indicate the strength of their relationships
with Olaparib response. Features with the highest absolute
loadings in their blocks include kinase activity of MOS
Proto-Oncogene, Serine/Threonine Kinase (MOS), Citron
Rho-Interacting Serine/Threonine Kinase (CIT) protein
expression, Endothelial Cell Adhesion Molecule (ESAM)
RNA expression, mutations in KIAA1549 and CNVs in
Cadherin 11 (CDH11) associating more with tumors on the
non-responding side of the regression analysis (Figure 4c).
Features with the highest absolute loadings associating more
with tumors on the responding side of the regression analysis
include kinase activity of Serine/Threonine-Protein Kinase
BRSK2 (BRSK2), kinase activity of Protein Kinase AMP-
Activated Catalytic Subunit Alpha 2 (PRKAA2), protein
expression of Asparaginase And Isoaspartyl Peptidase 1
(ASRGL1), protein expression of Leucine Rich Repeats And
Immunoglobulin Like Domains 1 (LR1G1), RNA expression
of G Protein-Coupled Receptor 157 (GPR157), and CNV in
Beta-2-Microglobulin (B2M), among others. (Figure 4c).
A Functional enrichment analysis calculated for proteins
and transcripts ranked by their absolute Comp1-Olaparib
loadings revealed enrichment in Serine/Threonine kinase
activity and Cadherin-related networks in tumors associating
with poor response to Olaparib in the regression analysis
(Supplementary Figure 6).

Figure 3: Clinical characteristic of the patients and ovarian PDX 
models are denoted, including (a) primary or metastatic status, (b) 
the age distribution of all patients the samples were collected from, 
(c) the distribution of treatment naïve and pretreated tumors, and
(d) the disease stage of the primary tumors. (e) Similarity network
fusion (SNF) analysis of combined RNA expression (upper heatmap
panel) and gene set enrichment (lower heatmap panel) data obtained
from the PDX models, with additional information on mutation
status shown at the top. (f) in vivo-based TGI values for Olaparib
treatment were acquired in ovarian PDX models and plotted as a
waterfall plot.

was again employed. Since we obtained a range of in 
vivo responses to Olaparib without a clear cutoff between 
response extremes, we integrated Olaparib pharmacology as 
a regression analysis, rather than a binarized response set. 
This also enabled us to test an alternative approach to PPMO 
integration, whereby we were attempting to predict specific 
TGI values. We first performed tuning steps to assess the 
required number of latent variables, and the optimal number of 
features to be selected from each block in each latent variable 
(see Materials and Methods). Using these parameters, 5 latent 
variables were calculated for each block. We observed latent 
variables of different blocks co-clustering by components 
in this analysis (Figure 4a). Importantly, Component 1 in 

Supplementary Figure 4: Context Likelihood or Relatedness 
network (CLR) calculated over multi-omics features from 
component 1, along with cytarabine response IC50. Shown here is 
a 2-neighborhood subgraph around cytarabine response, filtered for 
strongest (edge weight > 2) and significant (correlation FDR < 0.05) 
relationships. Edge thickness indicates interaction strength (weight).
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Context Likelihood or Relatedness (CLR) was used to 
reconstruct the regulatory network over multi-omics features 
from Comp 1-Olaparib, along with Olaparib response (TGI), 
based on mutual information (Figure 4d). The most strongly 
linked direct neighbors of the Olaparib response profile 
include known oncogenes and prognostic markers of ovarian 
cancer, including Xenotropic And Polytropic Retrovirus 
Receptor 1 (XPR1) protein expression [20], Notch Receptor 3 
(NOTCH3) protein expression [21], MAF BZIP Transcription 
Factor B (MAFB) RNA expression [22], Argininosuccinate 
synthetase 1 (ASS1) protein expression [23], and MEIS1 
protein expression [24], among others (Figure 2e).

Prospective Prediction of Cytarabine and Olaparib 
Responses

Though there were numerous biomarkers highlighted in 
our Cytarabine and Olaparib PPMO-based models, no one of 
them is strong enough to serve as an independent biomarker 
predicting therapeutic sensitivity. We therefore sought to test 
the trained PPMO models as a basis for prospective therapeutic 
sensitivity prediction. The resulting Comp 1-Cytarabine-
based model was tested on 7 newly profiled AML samples, 

Supplementary Table 5: (a) Correlations between proteins and 
their transcripts are positive and significant for 86% of genes. (b) 
Correlations between kinase activities and their expression levels. 
Positive correlations suggest the activity is driven by the protein 
expression.

Figure 4: (a) Pairwise correlations between latent variables 
(components) calculated for the different omics blocks, and 
olaparib response (shown in white in the row/column legends). Dots 
indicate significant correlations (FDR < 0.1, see figure S7C). The 
first component of all blocks is strongly correlated with olaparib 
response. (b) Clustering of omic blocks contained within Comp 
1-Olaparib. (c) Features with the highest contribution to Comp
1-Olaparib of each omics block. (d) A Context Likelihood or
Relatedness network (CLR) calculated over multi-omics features
from component 1, along with olaparib response TGI Shown here
is a 2-neighborhood subgraph around Olaparib response, filtered for
strongest (edge weight > 2) and significant (correlation FDR < 0.05)
relationships. Edge thickness indicates interaction strength (weight).

which had molecular and response data, but lacked FACS 
data. Despite the lack of the FACS block, the computational 
model was able to correctly classify the therapeutic response 
profile of 6 samples (Figure 5a-b). Importantly, removing 
any omic block within the PPMO model led to a significant 
reduction in the predictive power, reinforcing the notion that 
single gene or single omic-block biomarkers have limited 
potential. Notably, the mis-classified sample was on the border 
between an R and NR threshold (IC50 of 100 nm), indicating 
that there may be a ‘gray zone’ within the model whereby 
tumors will be difficult to predict a given response profile. 
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Model Tumor 
status Harvest site Histology Tumor grade Diagnosis Treatment 

history
Disease 

stage Age Ethnicity

CTG-0258 Metastatic Small bowel Papillary carcinoma, 
serous origin

Poorly 
differentiated N/A N/A N/A N/A N/A

CTG-0486 Metastatic Small bowel Papillary carcinoma, 
serous origin

Poorly 
differentiated N/A N/A III 77 N/A

CTG-0703 Metastatic Abdomen Serous carcinoma Poorly 
differentiated

First 
diagnosis Naive III 59 Asian

CTG-0712 Local 
metastatic Omentum Papillary carcinoma, 

serous origin
Poorly 

differentiated N/A Pretreated IV 72 Caucasian

CTG-0791 Metastatic Abdomen Papillary carcinoma, 
serous origin

Poorly 
differentiated

First 
diagnosis Pretreated III 46 Caucasian

CTG-0868 Metastatic Liver Endometrioid 
carcinoma

Poorly 
differentiated Recurrent Pretreated IV 72 Caucasian

CTG-0897 Metastatic Diaphragm Serous carcinoma Poorly 
differentiated Recurrent Pretreated III 62 Caucasian

CTG-0947 Metastatic Lymph node Epithelial Poorly 
differentiated Recurrent Pretreated III 59 Caucasian

CTG-0956 Metastatic Pelvis Serous carcinoma Well 
differentiated Recurrent Pretreated IV 73 Caucasian

CTG-0958 Metastatic Uterine adnexa Papillary carcinoma, 
serous origin

Poorly 
differentiated Recurrent Pretreated IV 62 Caucasian

CTG-0964 Metastatic Peritoneum Papillary carcinoma, 
serous origin

Poorly 
differentiated Recurrent Pretreated IV 56 Asian

CTG-0992 Metastatic Liver Carcinoma Poorly 
differentiated Recurrent Pretreated III 71 Caucasian

CTG-1086 Metastatic Lymph node Papillary carcinoma, 
serous origin

Poorly 
differentiated Recurrent Pretreated III 65 Caucasian

CTG-1166 Metastatic Neck Papillary carcinoma, 
serous origin

Poorly 
differentiated Recurrent Pretreated IV 60 Caucasian

CTG-1180 Metastatic Liver Endometrioid 
carcinoma

Poorly 
differentiated Recurrent Pretreated IV 73 Caucasian

CTG-1305 Primary Ovary Serous cyst-
adenocarcinoma Undifferentiated First 

diagnosis Naive III 60 Caucasian

CTG-1423 Primary Ovary Mixed epithelial 
carcinoma

Poorly 
differentiated

First 
diagnosis Naive II 46 Asian

CTG-1498 Metastatic Lymph node Carcinoma Poorly 
differentiated Recurrent Pretreated III 55 Asian

CTG-1602 Local 
metastatic Uterus Dedifferentiated 

carcinoma
Poorly 

differentiated N/A N/A N/A 53 Not available

CTG-1703 Local 
metastatic Pelvis Serous carcinoma Poorly 

differentiated Recurrent Pretreated III 73 Not available

CTG-2213 Metastatic Abdomen Clear cell carcinoma Poorly 
differentiated

First 
diagnosis Naive III 55 Caucasian

CTG-3226 Metastatic Lymph node Carcinoma Poorly 
differentiated Recurrent Pretreated IV 56 Caucasian

CTG-3383 Metastatic Lymph node Serous carcinoma Undifferentiated Recurrent Pretreated IV 57 Caucasian

Supplementary Table 4: Clinical and Molecular overview of the ovarian patient cohort and PDX Models Established. 
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The resulting Comp 1-Olaparib-based model was tested on 
5 newly profiled Ovarian samples, which had molecular and 
response data; CTG-2313 lacked RNAseq data. Importantly, 
models with a diverse BRCA status were included in this 
exercise. Since this model was based on a regression analysis, 
we sought to predict TGI values to Olaparib therapy, rather 
than simple R vs NR categorization. Despite the somewhat 
low number of models used to generate the prediction, the 
computational model predicted TGI values with an RMSE 
of 12.8 when CTG-2313 was included, and 11.1 when CTG-
2313 was excluded (Figure 5c-e). Importantly, removing 
any omic block within the PPMO model led to a significant 
reduction in the predictive power, as noted by the higher error 
in TGI prediction for model CTG-2313 lacking RNAseq. 
Notably, prediction accuracy seemed completely independent 
of BRCA status (Figure 5d).

Discussion
The two analyses presented here provide POC in the use 

of PPMO as the basis for next generation CDx assays that 
provide an accurate and prospective assessment of response 
profiles for a given therapeutic. The magnitude of these 
findings set the stage for using a more detailed approach in 
establishing CDx assays that are highly accurate and capture 

Supplementary Figure 6: Functional enrichment analysis calculated for proteins and transcripts ranked by their absolute Comp1 
loadings. The effect size is measured in area under curve (AUC). Terms with AUC > 0.65 and adjusted-p < 0.1 are shown. Blue: 
proportion of genes with negative loadings. Red: proportion of genes with positive loadings.

Figure 5: (a) Tumors are classified as Predicted NR (blue) and 
Predicted R (Green) based on their PPMO profile, and their actual 
IC50 values are plotted. (b) A confusion matrix of predicted vs actual 
R and NR tumors. (c) Predicted TGI values are plotted against TGI 
values obtained from in vivo studies. (d) Ovarian PDX models are 
shown with the predicted TGI, actual TGI and BRCA status. (e) 
Root-mean square error (RMSE) analysis of predicted vs actual TGI 
for all models in the cohort, and the cohort excluding CTG-2313.
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a broader patient population. Indeed, the dataset provided 
here is small in nature. However, given the success presented 
with this small cohort of tumors, we are confident that a 
scaling of the training set utilized would only strengthen the 
ability of PPMO to accurately provide prospective response 
predictions. Further, we acknowledge that the pharmacology 
input in this study was in vivo- and ex vivo-based readouts, 
rather than clinical outcomes. While significant research has 
demonstrated the clinical correlation between in vivo PDX 
modeling and clinical outcomes [25], evidence for an ex 
vivo correlation has not been substantiated. Nevertheless, as 
a POC, we view the exercise as one using a computational 
model to train on the complex molecule make up of a tumor 
based in a pharmacology variable input, to predict an identical 
pharmacology variable output. We speculate that changing 
the input/output variables to a clinical response would not 
impact the prediction accuracy. Further investigation in this 
matter will be revealing. Expansion to other tumor types 
and therapeutic modalities is also warranted. Our integrative 
analysis revealed several interesting associations with tumors 
exhibiting sensitivity or resistance to cytarabine in AML. 
While both CD34+ and CD56+ associated with cytarabine 
response profiles, and had loadings on Comp 1-Cytarabine, 
only CD34+ populations showed strong correlations (R >= 
0.8) with other molecular loadings of Comp 1-Cytarabine 
(Figure 4a). Specifically, CD34+ populations levels 
positively correlated with the kinase activity of PDK1/2 
and PDK3/4 , which are known metabolic gatekeepers and 
negative regulators of oxidative respiration [26] (Figure 
2d inner, and outer lines, respectively). Importantly, while 
this profile was present in cytarabine sensitive tumors, it 
was absent in cytarabine resistant tumors (Figure 2d). This 
suggests that tumors characterized by cytarabine resistance 
are enriched with a population of cells and exhibit increased 
oxidative respiration, while those tumors that are sensitive 
to cytarabine have an enrichment of CD34+ cell populations 
and exhibit a PDK-mediated inhibition of oxidative 
respiration. These results agree with a recent finding that 
high level of oxidative phosphorylation drives cytarabine 
resistance in AML [27]. In addition, a mutation in RNF213 
is top loading in Comp 1-Cytarabine (Figure 2c) associating 
with cytarabine resistance, and recent studies have speculated 
that RNF213 serves as a metabolic gatekeeper. It was shown 
that RNF213 plays an important role in lipid metabolism and 
the modulation of lipotoxicity [28], as well as fat storage and 
lipid droplet formation [29]. Moreover, RNF213 associates 
with PTP1B and HIF1A to coordinate the cellular response to 
hypoxia and controls non-mitochondrial oxygen consumption 
[30]. We also found negative correlation between ALDH3B1 
protein expression and PDK1/2 and PDK3/4 kinase activity, 
with ALDH3B1 protein expression enriched in NR tumors. 
Increased ALDH3B1 has been observed across tumor 
indications [31] and has been shown to increase ATP 

production [32]. Collectively, these results suggest a potential 
molecular switch occurring in CD34+ depleted tumors, 
potentially contributing to cytarabine resistance. Our analysis 
found evidence for additional intriguing mechanisms that we 
speculate may be contributing to Cytarabine resistance in these 
tumors. Namely, we found a positive correlation between 
MYC copy number gain and SAMHD1 protein expression in 
NR tumors (Figure 3d). Indeed, recent studies have proposed 
SAMHD1 as a biomarker for Cytarabine resistance [18]. 
The proposed mechanism occurs via SAMHD1-mediated 
hydrolysis of Ara-CTP which depletes the cells of Cytarabine 
[18]. Additional reports have suggested that MYC acts to 
transcriptionally regulate SAMDH1 expression [17]. Taken 
collectively, these integrated finding support the MYC-
SAMHD1 axis as a driver of and biomarker for cytarabine 
resistance. Further directed functional genomic investigations 
into the role of these biomarkers towards cytarabine resistance 
will be revealing. Our integrative analysis also revealed 
several interesting associations with tumors exhibiting 
sensitivity or resistance to Olaparib in ovarian cancer. 
Interestingly, we found that reduced expression of LRIG1 
protein expression associated with resistance to Olaparib 
(Figure 4c). This phenomenon has been observed in ovarian 
cancer cell lines exhibiting resistance to Etoposide [33]. We 
also found a downregulation of MEIS1 protein expression 
in tumors associating with reduced sensitivity to Olaparib 
(Figure 4c). MEIS1 has been implicated in the reorganization 
of epigenetic states via the recruitment of PARP1. Disruption 
of these epigenetic mechanisms, via the inhibition of PARP1, 
may render a tumor more sensitive than ones where these 
mechanisms are not active due to reduced MEIS1 expression. 
We also found increased protein expression of CIT and 
TAOK3 in tumors associated with reduced sensitivity to 
Olaparib (Figure 4c). CIT expression has been reported to 
provide protection against chromosome instability [34], 
while TAOK3 is involved in DNA repair via ATM-mediated 
p38 activation [35]. That increased protein expression of 
the phosphate efflux transporter, XPR1, is associated with 
Olaparib response was intriguing (Figure 4c). A recent study 
has shown a vulnerability in ovarian cancer cell lines when 
XPR1 activity is inhibited when Solute Carrier Family 34 
Member 2 (SLC34A2) is overexpressed do to intracellular 
phosphate overload [20]. Collectively, these findings 
support the power of using PPMO to better understand 
tumor cell biology and its relationship to pharmacology 
profiles. By leveraging a PPMO in this study, we identified 
a biomarker profile which may contain targets suitable for 
therapeutic intervention. Further analyses into the veracity 
of these biomarkers as therapeutic targets will be revealing. 
The biomarkers identified in this comprehensive study are 
intriguing and warrant further evaluation into potential roles 
they play in conferring therapeutic resistance. Importantly, 
none of the biomarkers presented can predict response profiles 
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independently of the entire biomarker profile. Accordingly, 
our findings demonstrate an early proof on concept on the 
strength of using PPMO models to establish diagnostic or 
companion diagnostic platforms.

Data Availability
The raw data were available under restricted access for 

intellectual property purposes, and access can be obtained 
by contacting the corresponding author at mritchie@
championsoncology.com
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