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Emerging target discovery and
drug repurposing opportunities
in chordoma

Daniel M. Freed*, Josh Sommer and Nindo Punturi

Chordoma Foundation, Durham, NC, United States
The development of effective and personalized treatment options for patients

with rare cancers like chordoma is hampered by numerous challenges.

Biomarker-guided repurposing of therapies approved in other indications

remains the fastest path to redefining the treatment paradigm, but

chordoma’s low mutation burden limits the impact of genomics in target

discovery and precision oncology efforts. As our knowledge of oncogenic

mechanisms across variousmalignancies hasmatured, it’s become increasingly

clear that numerous properties of tumors transcend their genomes – leading

to new and uncharted frontiers of therapeutic opportunity. In this review, we

discuss how the implementation of cutting-edge tools and approaches is

opening new windows into chordoma’s vulnerabilities. We also note how a

convergence of emerging observations in chordoma and other cancers is

leading to the identification and evaluation of new therapeutic hypotheses for

this rare cancer.
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Introduction

Chordoma is an ultra-rare bone cancer that arises in the skull base or spine of

pediatrics and adults, and originates from vestigial remnants of the embryonic

notochord. Normally a low-grade but locally invasive disease, current standard of care

for chordoma involves maximum surgical resection and/or radiotherapy (1). Despite

significant advances in surgical techniques and radiotherapy strategies, the majority of

chordoma patients eventually develop recurrent and/or metastatic disease and ultimately

require systemic therapy to control further progression (2). To date, no drugs are

approved for the treatment of advanced chordoma and conventional chemotherapy is

generally ineffective (1, 2), resulting in a poor prognosis in the advanced disease setting.

Research efforts over the past two decades have focused intensively on evaluating drug
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repurposing opportunities, primarily guided by detection of

activated signaling pathways (3–5), focused drug screens (6–8),

or anecdotal clinical responses to therapies (9, 10). These

investigations inspired several Phase II clinical trials primarily

involving multi-kinase inhibition with agents such as imatinib

(11), sorafenib (12), lapatinib (13), or everolimus plus imatinib

(14), for example, although modest efficacy and low objective

response rates were observed in each study. In parallel, efforts to

discover novel drug targets indicate that chordoma relies on the

lineage-specific transcription factor brachyury (15–17),

positioning it as arguably the most attractive – though, as of

yet undruggable – target in chordoma.

Over the same time period, the continued growth of genome-

guided precision oncology prompted an explosion of drug

repurposing efforts for molecularly-defined tumor types – a

trend that also extended into the realm of rare cancers. For

example, following its approval in chronic myelogenous

leukemia, imatinib was successfully repurposed for KIT-mutant

gastrointestinal stromal tumors (18), and dabrafenib plus

trametinib was repositioned for BRAF V600-mutated anaplastic

thyroid cancer (19) after the approval of this combination in non-

small cell lung cancer (NSCLC) and melanoma. These and other

success stories motivated a series of genomic profiling efforts in

chordoma (20–27), with the hope that lifting the veil on chordoma

genomes might reveal actionable therapeutic opportunities.

Instead, these studies revealed that, similar to most sarcomas

and pediatric cancers (28–30), chordoma appears to be

characterized by a low and infrequently-actionable mutation

burden – with only ~14% of chordomas harboring genomic

biomarkers predictive of response to FDA-approved or

investigational therapies in other indications (Table 1) (31).

Although this observation limits the current impact of

traditional genomic profiling on drug repurposing campaigns

and precision oncology efforts in chordoma, it does not mean

that chordoma is devoid of exploitable alterations per se (32).

Indeed, genomic profiling studies have identified several

potentially actionable alterations based on emerging science –

many of which we discuss further below – and validating these

therapeutic opportunities may increase the number of advanced-

stage chordoma patients that can benefit from genomics-guided

precision oncology. Moreover, systematic functional studies in

other rare cancers argue that multiple therapeutically actionable

vulnerabilities nonetheless exist in the context of a genomically

“quiet” background (33–35). In this review, we provide a

snapshot of the emerging drug repurposing landscape in

chordoma, while highlighting state-of-the-art approaches that

can open new windows into chordoma biology to extend our

view beyond that provided by genomics. We also discuss

opportunities to repurpose lessons learned in other cancers to

catalyze the identification of novel therapeutic hypotheses in

chordoma. The synthesis of this emerging knowledge may lead

to the discovery of new targets and the development of

personalized drug repurposing opportunities for chordoma.
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Emerging genomics-guided
drug repurposing opportunities
in chordoma

Although ~95-97% of chordomas belong to a single

histological subtype, multiple observations suggest that its

biology and disease mechanisms are heterogeneous. For example,

over half of patients experience disease recurrence following

complete tumor resection (2), and exhibit vastly different

responses to systemic therapies in the advanced disease setting

(36). Additionally, many chordomas are defined by complex

genomic rearrangements (20, 37) or recurrent copy number

losses (38), whereas other tumors harbor no detectable

alterations. This molecular heterogeneity is also reflected in

recent chordoma tumor profiling studies, which have utilized

next-generation sequencing to identify potentially actionable

alterations in chordoma (Table 1) (20–23). These studies indicate

that only ~14% of chordomas have biomarkers predictive of

response to FDA-approved or investigational therapies in other

indications. However, several opportunities for molecularly-guided

drug repurposing are emerging based on recent scientific advances

in chordoma and other cancers, and validation of these therapeutic

hypotheses may increase the number of chordoma patients that

can benefit from precision oncology (Figure 1A).
Growth factor signaling

In one large cohort (20), PI3K pathway alterations were

observed in 16% of cases (n = 17/104), indicating an opportunity

to explore repurposing of inhibitors targeting PI3K or its

downstream effector mTOR. One of the most frequently altered

genes in chordoma is PTEN (Figure 1A); the resulting potential

dependence on PI3Kb signaling (40) suggests an opportunity to

evaluate PI3Kb inhibitors in chordoma (41). Indeed, a recent

preclinical study revealed significant tumor growth inhibition by

the pan-PI3K inhibitor buparlisib (BKM120) in patient-derived

xenograft models (42). Downstream of PI3K, clinical trials

involving mTOR inhibitor combinations have demonstrated

modest clinical benefit in chordoma patients, particularly in

tumors with mTOR effector activation (14, 43). Intriguingly,

chordoma sometimes occurs in patients with tuberous sclerosis

complex (44–46), which is characterized by loss of the mTOR

negative regulators TSC1/2, further hinting at a role for the PI3K/

mTOR pathway in chordoma pathogenesis. Moreover, PI3K and

mTOR are regulated by receptor tyrosine kinases (RTKs), of which

several appear to be activated in most chordoma tumors (4).

Several studies have analyzed the activation state or effects of

targeting RTKs including MET (47, 48), IGF1R (49, 50), and the

FGFR family (51), though PDGFRb (5, 10) and EGFR (3, 52) have

received the most attention, primarily owing to evidence of some

clinical benefit from agents targeting these RTKs (9–11, 13). Since
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TABLE 1 Chordoma mutations reported in genes of potential therapeutic significance.

Gene Process Type Mutation Reference

PIK3CA Growth Factor Signaling Single Nucleotide Variant – (21)

Homozygous Deletion NA (21)

Missense (n=2) p.E545K (20), (25)

Missense p.M1043I (20)

Missense p.N345S (25)

PTEN Missense p.N48S (20)

Frameshift Indel p.P246fs*8 (25)

Homozygous Deletion NA (25)

Nonsense p.R335* (25)

Frameshift Indel – (21)

Frameshift Indel – (23)

Missense p.G251V (22)

Nonsense p.R233* (22)

PIK3R1 Frameshift Indel p.M271fs*9 (20)

BRCA2 DNA Damage Repair Missense p.A75S (20)

Missense p.R2842C (25)

Rearrangement BRCA2-SPATA13 (25)

Missense p.E714A (26)

Nonsense p.G715* (26)

Missense p.I1173F (26)

Nonsense p.C1200* (26)

Missense p.E1593D (26)

Missense p.K1690N (26)

Missense p.E2301G (26)

Missense p.T2337I (26)

Missense p.S2522F (26)

Missense p.N2706S (26)

Missense p.R2784W (26)

CHEK2 Frameshift Indel p.T367fs*15 (25)

ATM Missense – (23)

PALB2 Missense p.S133T (26)

Missense (n=2) p.Q348K (26)

Missense p.S543A (26)

Missense p.V919I (26)

Missense p.I1035V (26)

Missense p.S1165L (26)

SMARCB1 Chromatin Remodeling Missense p.E95K (24)

Nonsense p.E360* (22)

PBRM1 Single Nucleotide Variant – (21)

Structural Variant (n=5) – (21)

Indel (n=4) – (21)

Missense p.I555K (20)

Frameshift Indel p.F1007fs*6 (20)

Nonsense p.R889* (20)

Frameshift Indel p.F120fs*54 (25)

Frameshift Indel p.S383fs*1 (25)

Homozygous Deletion NA (25)

Frameshift Indel – (23)

(Continued)
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RTK mutations are not frequently seen in chordoma, these

receptors are presumably activated through alternative

mechanisms such as aberrant growth factor production, which

may be directly regulated by brachyury (53). The frequent

activation of RTKs observed in chordoma may be related to the

role of the notochord in regulating embryonic tissue patterning; in

this context RTKs are thought to dictate proliferation and

differentiation through the interpretation of morphogen gradients

(54, 55). Inhibitors of wild-type EGFR, such as afatinib and

cetuximab, have reproducibly shown promising activity against

chordoma cell lines (3, 6, 7) and xenograft models (39, 47), which

has motivated two Phase II clinical trials (NCT03083678 and

NCT05041127). Since these strategies rely on inhibition of wild-

type EGFR, it remains to be seen whether skin and gastrointestinal

toxicities will limit their efficacy in the clinic (56).

Growth factor signaling drives cell proliferation by

upregulation of cyclin D, CDK4/6 activation, and progression

through the G1/S cell cycle checkpoint. RTK activation along

with frequent loss of the cell cycle tumor suppressor CDKN2A in

chordomas (24, 38, 57, 58) has motivated preclinical

repurposing studies with CDK4/6 inhibitors (39, 59, 60) and a
Frontiers in Oncology 04
Phase II trial involving palbociclib in CDKN2A-null chordoma

patients (NCT03110744). It remains unclear, however, whether

CDKN2A loss is a faithful predictor of sensitivity to CDK4/6

inhibition (61, 62) – possibly because, in addition to p16INK4A,

CDKN2A encodes p14ARF, whose loss results in CDK2

deregulation and compensatory G1/S cell cycle progression.

Nevertheless, tumors with co-deletion of the CDKN2A-

proximal MTAP gene may present an opportunity for

combinations involving CDK4/6 inhibitors and antagonists of

the PRMT5 axis (63–65). Notably, CDK4/6 inhibition has been

reported to potentiate T cell immunity in several contexts (66,

67), and we discuss opportunities for evaluating CDK4/6

inhibitor combinations in this context further below.
DNA damage repair

Genomic profiling studies have also revealed potential synthetic

lethality strategies in chordoma. Several deleterious alterations have

been reported in genes involved in DNA damage repair and

response, including BRCA2, CHEK2, PALB2 and ATM (20, 23,
TABLE 1 Continued

Gene Process Type Mutation Reference

Missense – (23)

Nonsense – (23)

Frameshift Indel – (23)

Missense p.S1315F (24)

Nonsense p.E924* (22)

ARID1A Frameshift Indel p.D641Vfs*8 (20)

Indel p.A345_A349del (25)

Missense – (23)

Frameshift Indel – (23)

Nonsense – (23)

Nonsense p.S320* (22)

ARID1B Missense – (23)

Missense p.V602A (24)

Indel p.315_315del (24)

ARID2 Single Nucleotide Variant – (21)

Homozygous Deletion NA (25)

SETD2 Single Nucleotide Variant (n=2) – (21)

Structural Variant – (21)

Frameshift Indel p.S2253fs*56 (20)

Frameshift Indel p.T2338fs*31 (25)

Missense – (23)

Indel p.2517_2519del (24)

Frameshift Indel p.P2381fs* (24)
fro
Mutations denoted with a “-” signify that the mutation type was reported in the associated study without a specific protein alteration call. In such cases, sometimes multiple mutations of the
same type were reported, which is signified in parentheses. For alterations classified as single nucleotide or structural variants, no further detail regarding the specific nature of these
alterations was provided in the associated study. Alterations colored in red text are existing standard care or investigational biomarkers predictive of response to an FDA-approved or
investigational drug in another indication (OncoKB Therapeutic Level 3B; AMP/ASCO/CAP Level C Evidence), and those in blue text may be predictive of response to a drug as supported
by compelling biological evidence (OncoKB Therapeutic Level 4; AMP/ASCO/CAP Level D Evidence). The alterations colored red and blue make up 14% of all tumors sequenced across
each published profiling study.
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https://doi.org/10.3389/fonc.2022.1009193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Freed et al. 10.3389/fonc.2022.1009193
25, 26). In one recent study, a novel defective homologous

recombination signature was identified in advanced chordomas

that appears to impart a “BRCAness” phenotype and sensitivity to

PARP inhibition (22). This strategy is being explored further in a

Phase 2 clinical trial combining olaparib plus trabectedin for solid

tumors with this defective homologous recombination signature

(NCT03127215). Future studies aimed at examining the potential

link between DNA damage repair defects and complex genomic

rearrangements in chordoma may provide further mechanistic

insight into this therapeutic opportunity.
Chromatin remodeling

Other studies have identified alterations in chromatin

remodeling genes such as SETD2 and SWI/SNF complex

members SMARCB1, ARID1A, and PBRM1 (20, 21, 24).
Frontiers in Oncology 05
Notably, biallelic loss of SMARCB1 defines an aggressive,

poorly differentiated histopathological subtype of chordoma

(<5% of cases) that most commonly afflicts the pediatric

patient population (68, 69). Based on the apparent EZH2

dependence bestowed by SWI/SNF alterations (70, 71), a

Phase II study is underway to explore repurposing of

tazemetostat for SMARCB1-null chordoma (NCT02601950).

The presence of SWI/SNF alterations also suggests

opportunities for therapeutically exploiting aberrant SWI/SNF

function, for example through resulting synthetic lethality with

BRD9 antagonists (72–74), inhibitors of DNA repair (75–77), or

p53 activation (78). Implementation of functional genomics

screens may lead to the discovery of additional chordoma-

specific synthetic lethal strategies in this context, which we

discuss in more detail below.

An interesting connection appears to exist between SWI/

SNF, the Hippo pathway, and brachyury, chordoma’s main
B

C

A

FIGURE 1

Therapeutically relevant genomic alterations found in chordoma and non-small cell lung cancer (NSCLC). (A) Nonsynonymous mutation call
data from chordoma tumors were compiled from seven published genomic profiling studies (20–26). Genes are grouped by their protein
functionality (chromatin remodeling, DNA damage repair (DDR), growth factor (GF) signaling, and receptor tyrosine kinases (RTKs)) and were
selected by on their association with potential therapeutic opportunities based on current scientific literature, as reviewed here. The cohort of
tumors analyzed for potentially targetable alterations varied on a per gene basis to account for variation between sequencing techniques and
data presentation across studies: SMARCB1 (n = 2 altered/123 total), PBRM1 (22/203), ARID1A (6/123), ARID1B (3/104), ARID2 (2/203), SETD2 (8/
203), PTEN (8/179), PIK3CA (6/203), PIK3R1 (1/123), BRCA2 (12/260), CHEK2 (1/123), ATM (1/123), PALB2 (7/260). The subset of actionable gene
alterations are existing standard care or investigational biomarkers predictive of response to an FDA-approved or investigational drug in another
indication (OncoKB Therapeutic Level 3B; AMP/ASCO/CAP Level C Evidence) or are predictive of response to a drug as supported by
compelling biological evidence (OncoKB Therapeutic Level 4; AMP/ASCO/CAP Level D Evidence). Potentially actionable alterations are variants
of currently-unknown significance (31). (B) Actionable gene alterations in metastatic NSCLC (39). (C) Examples of potential therapeutic
opportunities indicated by specific gene alterations. The letter “i” signifies an inhibitor, whereas “d” denotes a degrader.
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Achilles’ heel (79). Hippo transcriptional effectors YAP and

TEAD are critical for notochord differentiation during

embryonic development (80). Indeed, a YAP/TEAD motif is

one of the top brachyury binding sites in chordoma cells (81),

and reports have linked brachyury-mediated YAP upregulation

to stemness and growth (82) – suggesting convergence between

the Hippo and brachyury signaling networks. Intriguingly, SWI/

SNF appears to sequester YAP, preventing its association with

TEAD and thus antagonizing oncogenic Hippo transcriptional

outputs (83). A key role of loss-of-function SWI/SNF alterations

in chordoma may therefore be de-sequestration of YAP, which,

when augmented by brachyury-mediated upregulation of YAP

synthesis and stability, drives Hippo pathway flux to an

oncogenic level. These observations suggest opportunities for

evaluating an emerging class of TEAD palmitoylation inhibitors

(84–86) in chordoma.
Moving beyond genomics to identify
new therapeutic strategies

Creating a multidimensional map of
chordoma cell circuitry

Although genomic profiling studies have informed our

understanding of chordoma biology and expanded the list of

potentially actionable therapeutic targets, chordoma nevertheless

remains largely devoid of the recurring, actionable genomic

alterations that define other solid tumors. For example, therapeutic

biomarkers guide care for over two-thirds of metastatic NSCLC

patients, with response rates to targeted therapies often approaching

70-80%, while chordoma profiling studies indicate ~14% of cases

have potentially actionable genomic alterations (Figure 1). As

highlighted in the previous section, our developing understanding

of cancer biology suggests up to an additional ~30% of chordomas

might have actionable genomic alterations; nevertheless, a majority

of advanced-stage patients lack clear or effective treatment options.

This creates a need to open new windows into chordoma

biology that extend our view beyond the “single oncogenic

driver” perspective of cancer’s dependencies. To this end,

studies across several cancers have revealed new categories of

therapeutic targets, called “non-oncogene dependencies”, that

mediate epigenetic changes, dysregulated signal transduction,

metabolic rewiring, immune evasion, and other hallmarks of

cancer (32). Multiple efforts are underway to analyze and

integrate data layers derived from different aspects of cell

biology, with a view to providing a more detailed molecular-

resolution view of chordoma pathogenesis. For example, a

recent investigation of methylation signatures in circulating

tumor DNA revealed the existence of two distinct epigenetic

subtypes in chordoma with prognostic relevance (87). A gene-set

enrichment analysis pointed to dysregulated signaling pathways
Frontiers in Oncology 06
operating within each subtype, uncovering potential therapeutic

opportunities that prompt further evaluation in functional

studies. The exploration of additional data layers may further

elucidate chordoma’s molecular subtypes, including their

association with specific therapeutic vulnerabilities, risk of

recurrence, and other features of the disease. Such multi-omics

studies may also lead to the identification of tumor-specific or

lineage-restricted cell surface proteins that can serve as targets

for antibody-drug conjugates, bispecific antibodies, chimeric

antigen receptor T cells, or other surface antigen-

targeted modalities.
Tumor-host interactions in the tumor
microenvironment

In addition to tumor cell intrinsic targets, therapeutic

opportunities may exist within the tumor microenvironment,

where crosstalk with various immune and stromal cell subsets can

profoundly influence chordoma progression and therapy

response (88, 89). Studies of the chordoma immune

microenvironment to date have focused on the PD-1 axis (90,

91), as well as other potentially important immune checkpoints

such as B7-H3 and HHLA2 (92, 93). A recent single-cell

transcriptomic analysis of six chordoma tumors identified

putative immunosuppressive contributions from regulatory T

cells, tumor-associated macrophages, and TGFb signaling (94).

Notably, TGFb pathway genes are upregulated by brachyury (81).
These results point to a repurposing opportunity for antagonists

of TGFb signaling in combination with immune checkpoint

blockade (95, 96). Interestingly, a chordoma patient treated

with a bifunctional fusion protein targeting TGFb and PD-L1

experienced late-onset tumor shrinkage in a Phase 1 trial (97).

The set of factors that govern antitumor immunity is complex,

and more comprehensive phenotyping of the chordoma immune

microenvironment – through single-cell sequencing, digital

spatial profiling, multispectral immunofluorescence and other

approaches – will be important for creating an atlas of the various

lineage states in chordoma and revealing therapeutically-

reversible defects in the cancer-immunity cycle (98).
Tumor-host interactions at the
physiological level

Other important tumor cell extrinsic features extend beyond

the microenvironment, highlighting the need to study chordoma

biology at various resolutions – including contributions from

host physiology. For example, germline genetics are now

understood to play a role in cancer predisposition (99) and

tumor immunity (100). Additionally, the gut microbiome

impacts immunotherapy efficacy in several solid tumor types
frontiersin.org
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(101–103), and recent data indicate that certain dietary habits

can modulate the composition of the gut microbiome and

influence immunotherapy response (104). Though it remains

unclear how these factors contribute to the biology or treatment

response of chordoma tumors, some studies are beginning to

explore these questions. For example, MD Anderson’s Patient

Mosaic initiative aims to collect genetic, immune, and

microbiome profiles from thousands of cancer patients to

inform treatment strategies. Biospecimens collected from

chordoma patients enrolled on the cetuximab Phase II study at

MD Anderson will be included in the Patient Mosaic protocol,

shedding light on how host (and other tumor extrinsic) factors

shape chordoma tumor biology.
Recent advances in the establishment
and availability of chordoma models

The functional validation of new therapeutic targets and

strategies resulting from multi-omics studies requires

appropriate patient-derived samples and preclinical models. To

this end, a variety of chordoma models have been developed by

several groups (105, 106). In addition, the Chordoma Foundation

has built a tumor biobank of over 500 biospecimens and a model

repository currently consisting of 26 cell lines, 12 patient-derived

xenograft (PDX) models, and a PBMC-humanized mouse model

(www.chordoma.org/research). The majority of these models

have been characterized by whole-exome and whole-

transcriptome sequencing and will undergo additional multi-

omics characterization in the future, with a view to facilitating

hypothesis testing through the establishment of models

representing the full diversity of chordoma. Moreover, these

models are available to the research community, as are in-kind

drug testing services offered through the Chordoma Foundation’s

Drug Screening Program. As emerging drug repurposing

concepts are evaluated in the Drug Screening Program,

resulting data are publicly shared, whenever possible (107), to

provide justification for further evaluation of the most promising

therapeutic opportunities.
Unbiased functional assays for
target discovery and personalized
medicine

Patient-derived models for target
discovery and precision oncology

In translational cancer research, PDX models have been the

gold standard for preclinical drug testing because they accurately

recapitulate features of the patient’s tumor (108, 109); this has

motivated the development of over two dozen chordoma PDXs
Frontiers in Oncology 07
by the Chordoma Foundation and others (47, 105) that

represent the anatomical, age, histopathological, and known

molecular diversity of chordoma. More recently, patient-

derived organoids (PDOs) have generated significant interest

as functional models because they provide faithful

representations of patient tumors, while improving on

initiation time, cost, and efficiency scales compared to PDXs

(110). This technology is now being actively explored in

chordoma; one recent proof-of-concept study reportedly

developed chordoma PDOs from five different patients and

screened them against various drugs to nominate personalized

repurposing opportunities (111). In other cancer types, PDOs

accurately mimic patient drug response (112–114) and have

been utilized for personalized therapy (115, 116). The slow

growth rate of chordoma tumors provides a large window of

opportunity to develop protocols for establishing, validating,

screening chordoma PDOs from high-risk or relapsing patients

to enable identification of effective drug repurposing

opportunities within the timeframe required to make

treatment decisions.
Implementing systematic functional
screens to develop new therapeutic
hypotheses

Patient avatars like PDXs, PDOs and cell lines also serve as

key platforms for target discovery because they allow functional

studies capable of revealing or validating non-oncogene

dependencies in chordoma. Genome-scale loss-of-function

screens in various cancer cell lines have enabled the creation

of “dependency maps” (33, 117), and this cutting-edge approach

has recently been applied to chordoma to identify selective

genetic dependencies (79). Perhaps unsurprisingly, T (or

TBXT), the gene encoding brachyury, appears to be the most

selectively essential gene in chordoma. Since brachyury (like

most transcription factors) is a challenging drug target, the

authors performed a drug repurposing screen and found that

inhibitors of CDK9 or CDK7/12/13 (118) downregulate TBXT

transcription and suppress chordoma cell proliferation. These

results have motivated further in vivo testing of transcriptional

CDK inhibitors, including KB-0742 (119), in the Chordoma

Foundation’s Drug Screening Program (120).

Ongoing systematic screening of genetic and chemical

vulnerabilities in chordoma is facilitating the development of

new therapeutic hypotheses. For example, CDK6 – but not

CDK4 – appears to be a genetic essentiality in some chordoma

cell lines (79). Outside of their common cell-cycle target RB1,

CDK6 possesses a much broader substrate repertoire than does

CDK4 (121) – suggesting that one or more non-RB1 targets may

be mechanistically linked to chordoma’s CDK6 dependence.

One interesting possibility relates to the observation that

chordoma cells are sensitive to the lipid hydroperoxidase
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inhibitor RSL3 (79), which is known to promote ferroptotic cell

death via antagonism of GPX4. CDK6 can upregulate

glutathione and NADPH via phosphorylation of two glycolytic

enzymes (122); depletion of these antioxidants can prime cells

for ferroptosis (123). CDK6 may therefore be crucial for

maintaining redox homeostasis in chordoma to safeguard

against ferroptosis, providing rationale for evaluation of

CDK4/6 inhibitors in combination with ferroptosis inducers.

Chordoma’s apparent CDK6 dependence and potential

ferroptosis susceptibility raises intriguing and unexpected

parallels with clear-cell carcinomas (124, 125). Histologically,

c lear-ce l l renal ce l l carcinoma (ccRCC) is almost

indistinguishable from chordoma, owing to morphological

similarities between ccRCC’s characteristic lipid droplets and the

physaliferous cells that define conventional chordoma (126).

Notably, ferroptosis susceptibility in clear-cell carcinomas has

been linked to HIF-1/2a-dependent accumulation of

polyunsaturated lipids within the intracellular droplets that give

rise to the clear-cell morphology (124). Both brachyury and

mTOR are known to upregulate HIF-1a (81, 127–129),

suggesting a possible connection between dysregulated hypoxia

signaling, physaliferous morphology, and establishment of a

ferroptosis-susceptible state in chordoma (Figure 2A). Although

the precise composition of physaliferous vacuoles remains unclear

(130–132), chordoma and ccRCC share additional similarities,

including resistance to chemotherapy and modest mutational

burdens enriched in chromatin modifier and PI3K/mTOR

pathway alterations (133). Collectively, these observations
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suggest these cancers of different tissue origins share a similar

cellular context, and potentially associated therapeutic

vulnerabilities – providing opportunities for repurposing lessons

learned from a well-studied and common cancer.
Functional screens to identify
synthetic lethalities

Another key implementation of systematic functional

screens involves the discovery of synthetic lethal and

combination therapy strategies. Loss-of-function screens in

large cell line panels have led to identification of new synthetic

lethal interactions (117, 134, 135), including PRMT5

dependence in cells with MTAP loss (63, 64). As noted above,

the CDKN2A/MTAP locus is frequently deleted in chordoma

(20, 21), suggesting an opportunity for repurposing PRMT5 or

MAT2A inhibitors (136, 137). Exploiting such synthetic

lethalities not only provides an avenue for targeting tumor

suppressor loss in cancer, but is a particularly important

approach to explore in genomically quiet malignancies. In

addition to potential vulnerabilities created by loss of MTAP,

SWI/SNF, or homologous recombination repair (as noted

above), an intriguing candidate for synthetic lethality screening

is LYST – a lysosomal trafficking protein of unknown function

that’s lost in 10% of chordomas (20). Functional genomics

screens in chordoma cell lines with LYST loss may reveal

targetable vulnerabilities created by this unique alteration.
BA

FIGURE 2

Examples of emerging therapeutic hypotheses in chordoma. (A) Potential mechanisms of ferroptosis susceptibility in chordoma and parallels
with clear-cell carcinomas. In clear-cell carcinomas, dysregulated HIF-1/2a functions through HILPDA to promote deposition of
polyunsaturated fatty acid (PUFA) lipids in intracellular lipid droplets. GPX4 activity counteracts PUFA-lipid oxidation and protects cells from
ferroptosis. In chordoma, brachyury and mTOR activity may upregulate HIF-1/2a, resulting in deposition of PUFA lipids in physaliferous vacuoles.
CDK6 activity may be critical for antioxidant production to protect chordoma cells against ferroptosis. (B) Combined inhibition of MAPK
signaling and CDK4/6 activity promotes robust cell cycle arrest and antitumor immunity. Studies in other cancers revealed that combined
inhibition of MEK and CDK4/6 with trametinib and palbociclib leads to sustained proliferative arrest and a senescence-associated secretory
phenotype (SASP) that promotes NK and T cell immunity. As single agents, cetuximab and palbociclib reportedly augment NK and T cell
immunity, respectively. Thus, combining cetuximab with palbociclib may synergistically inhibit tumor growth while stimulating a SASP that
augments the activation of NK and T cell-based immunity promoted by each agent.
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The next frontiers

Combination therapy strategies

Preclinical and clinical research has yet to identify a therapy

capable of producing frequent responses in chordoma (36),

motivating the development of combination strategies aimed

at increasing the magnitude and duration of therapeutic benefit.

One approach with this goal in mind involves performing

unbiased anchor screens, in which genome-wide CRISPR

screening is utilized to identify genes whose loss sensitizes cells

to a given targeted therapy ‘anchor’ (136). Such genes – if

druggable – may serve as attractive targets for combination

therapy regimens. A similar approach can also be employed to

identify candidate resistance mechanisms – that is, genes whose

loss (or gain) reduce sensitivity to the anchor drug.

As one of the most well-validated therapeutic targets in

chordoma, inhibitors of wild-type EGFR are arguably the best

‘anchors’ to initially explore in unbiased screens or rational

combination studies . Indeed, combination therapy

investigations with afatinib (47) or cetuximab (138) have

yielded encouraging results. One interesting hypothesis

involves combining cetuximab with a CDK4/6 inhibitor

(Figure 2B). Since CDK4/6-mediated G1/S cell cycle

progression is highly dependent on RTK/MAPK signaling,

concomitant antagonism of EGFR-mediated cyclin D

upregulation and CDK4/6 kinase activity may cause a more

complete cell cycle arrest. This effect has been observed in lung

(139) and pancreatic cancers (140), where combined MEK and

CDK4/6 inhibition induced a profound G1/S arrest, resulting in

a senescence-associated secretory phenotype (SASP) that

promoted increased NK cell-mediated cytotoxicity and

infiltration of CD8+ T cells, respectively. Importantly, as an

IgG1 antibody, cetuximab monotherapy appears to promote

antibody-dependent NK cell-mediated cytotoxicity in several

cancers including chordoma (141). A cetuximab/CDK4/6

inhibitor combination may therefore act synergistically to halt

the growth of chordoma tumor cells and provoke a strong NK-

and T-cell based antitumor response. As a result, further

exploration of this concept may be warranted, particularly

once the single-agent activity of cetuximab (NCT05041127)

and palbociclib (NCT03110744) in chordoma is benchmarked

in the clinic. Notably, similar combination immunotherapy

approaches aiming to enhance NK cell-mediated killing have

recently been described in chordoma (138), and these strategies

were reported to selectively target the reservoir of cancer stem-

like cells that promote recurrence and therapy resistance.
Immunotherapy strategies

Achieving deep and durable responses in chordoma will

likely require identification of therapeutic concepts capable of
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invigorating antitumor immunity. Despite a low tumor

mutational burden, a significant proportion of chordomas

appear to be charac t e r i zed by complex genomic

rearrangements (20, 37), which may lead to high neoantigen

expression. In addition to the examples noted above,

documented patient responses to vaccines (142) and PD-1

inhibitors (143–146) provide important proof-of-concept for

the use of immunotherapies in chordoma, and prompt

evaluation of different immune checkpoints and combinations

thereof. For example, strong scientific rationale exists for co-

blockade of the PD-1 and TIGIT checkpoints in cancer (147),

and a new clinical study enrolling chordoma patients is testing

th is concept wi th atezo l izumab plus t i rago lumab

(NCT05286801). Another promising approach involves the

cell-surface protein CD24, which is frequently expressed in

chordomas and – along with brachyury and low molecular

weight cytokeratins – has been used as a diagnostic marker for

chordoma in some cases (148). Intriguingly, tumor-derived

CD24 was recently identified as a key anti-phagocytic “don’t

eat me” signal in other solid tumors (149), making it a promising

immunotherapeutic target and prompting evaluation of CD24

blockade in chordoma. The evaluation of immunotherapy

combinations in chordoma, such as PD-1 antagonism plus

inhibition of TIGIT or TGFb signaling as noted above, may

reinvigorate the tumor-immunity cycle at multiple points.

Multi-omics studies of chordoma may be valuable in guiding

these efforts and revealing key molecular details governing the

chordoma immune microenvironment.
New drug discovery driving
repurposing in reverse

Tumorigenesis appears to require three main ingredients: an

oncogenic signaling input, deregulation of the signal through

tumor suppressor loss (150, 151), and a permissive

transcriptional environment for interpretation of oncogenic

signaling (152, 153). Lineage-specific transcription factors –

such as brachyury in chordoma – are essential for creating a

permissive environment (79), and thus represent attractive drug

targets. While oncogenic signaling and tumor suppressor loss

can be targeted by kinase inhibitors and synthetic lethal

strategies, respectively, transcription factors like brachyury are

inherently challenging drug targets (Figure 3A). However,

advances in drug discovery and the development of new

targeted protein degradation technologies, such as proteolysis

targeting chimeras (PROTACs) and molecular glues, provide

opportunities to redefine this paradigm (154). To this end,

numerous projects have recently been launched to develop

novel compounds that bind brachyury with high affinity,

which can either serve as functional inhibitors, molecular

glues, or warheads for PROTACS. Notably, an open-source

project through the Structural Genomics Consortium is
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focusing on the development of high-quality probes that bind

pockets identified in brachyury crystal structures (Figure 3B) to

induce industry investment in further brachyury drug discovery.

The development of functional inhibitors is a challenging

endeavor, given that brachyury lacks the deep binding pockets

commonly associated with enzymatic activity. Yet, transcription

factors like brachyury are often involved in multiprotein

complexes, pointing to the development of compounds that

modulate protein-protein interactions as an attractive strategy.

For example, brachyury associates with the histone

acetyltransferase p300 using an interface involving amino acid

residue Y88 (Figure 3A) (155). The proximity of Y88 to residue

G177 (Figure 3A) is interesting, as a G177D germline variant is

strongly associated with chordoma (15). Because residue G177

is on a flexible, solvent-exposed loop, the G177D mutation is

unlikely to affect brachyury structure – however this substitution

may stabilize intermolecular contacts with p300 or other binding

partners, thus modulating brachyury function. Indeed, the

interaction between brachyury and p300 appears to regulate

histone 3 lysine 27 acetylation (155) – a modification associated

with active enhancers. Since association of brachyury with super-

enhancers appears to be crucial to its role in chordoma (79, 81),

designing compounds that can block or allosterically modulate

this protein-protein interaction – for example, by targeting pocket

A’ or F (Figure 3B) – may represent an attractive therapeutic

strategy. Another novel approach to functionally modulating

brachyury involves the development of Transcription Factor

Targeting Chimeras (TRAFTACs) (156). In contrast to

PROTACs, TRAFTACs utilize a transcription factor-specific

DNA sequence to achieve target specificity, which is linked to

an E3 ligase-recruiting moiety that directs brachyury to the

proteasome for degradation.

Although new drug discovery in an ultra-rare indication

presents numerous challenges, the concept of “reverse” drug

repurposing – that is, repurposing drugs initially developed in a

rare cancer to more common indications – represents a
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promising path. Further highlighting the intriguing parallels

between chordoma and kidney cancer, brachyury expression is

associated with poor survival in ccRCC and papillary RCC

(Figure 4) (133, 157). Interestingly, expression of CDK6 – an

apparent dependency in both chordoma and ccRCC (125), as

noted above – appears to be regulated by brachyury (79).

Numerous additional studies indicate brachyury is associated

with poor prognosis and implicated in driving recurrence,

metastasis, and/or resistance to standard of care therapy in

several more common cancers including breast (158–161),

lung (162–166), and colon (167). Thus, chordoma represents a

“pure” and target-rich setting for the initial development of

brachyury antagonists, which can then be expanded into larger

indications where brachyury plays a role in disease progression.
Perspective

Even when macroscopic complete resection is achieved using

cutting-edge surgical approaches, the majority of chordoma

patients experience disease recurrence and are unlikely to be

cured (1, 2). At some point, local therapies such as surgery and/or

radiation are no longer safe or feasible, and treatment options

become limited due to a lack of effective systemic therapies. This

has motivated intensive research to identify effective therapeutic

strategies in chordoma, but drug repurposing efforts have been

hampered by chordoma ’s resistance to conventional

chemotherapy and a paucity of actionable genomic alterations.

In this review, we highlight several therapeutic hypotheses

inspired by developing knowledge of chordoma biology and its

parallels with other cancer types. In particular, we focus on

emerging therapeutic opportunities based on emerging

knowledge linking drug sensitivity to specific biomarkers.

Nevertheless, through the lens of genomic sequencing, most

chordomas still lack actionable alterations – underscoring the

need to implement more sophisticated multi-omics approaches.
BA

FIGURE 3

(A) Structure of the brachyury dimer bound to DNA (PDB ID 6F58). The alpha carbons of residues Y88 and G177 are separated by a distance of
~9 Å (B) Brachyury rendered in surface representation, showing the two main pockets being targeted by open-source drug discovery efforts and
the DNA binding interface targeted by TRAFTACs.
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Indeed, genomics is only one piece of the puzzle; tumor growth

is controlled by multiple integrated systems, with each

contributing uniquely to chordoma’s biology. Therapeutic

opportunities exist within each of these systems, and efforts

focused on elucidating and integrating them will provide a fuller

view of chordoma’s biology. A key goal of multi-omics profiling

efforts will be the identification of molecular subtypes, stratified

by risk and therapeutic vulnerabilities, as has been demonstrated

in other cancers (168–170).

In parallel, unbiased functional assays, utilizing genome-

wide CRISPR or high-throughput drug screening, may reveal

non-oncogene dependencies or combination therapy strategies

that would otherwise be difficult to detect through multi-omics

profiling approaches. The identification of additive or synergistic

therapeutic combinations is of particular interest, given the low

historical response rates in chordoma (36). In addition to

guiding target discovery campaigns, functional assays can

provide personalized medicine opportunities. For example, if
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multi-omics studies identify patients at high risk for recurrence,

the ability to establish and profile drug sensitivity of PDXs or

PDOs at time of initial surgery may allow nomination of

potential therapeutic options upon disease recurrence, as

successfully demonstrated recently in breast cancer (116). Due

to the intrinsically slow growth of chordoma tumors, such an

approach could also be considered at the time of recurrence.

Finally, we highlight how technological advances are opening

the door to targeting the transcription factor brachyury, the main

Achilles heel of chordoma. The identification of binding pockets

on brachyury can serve as target sites for PROTAC warheads or

molecular glues, but they may also be functionally important. One

such potential site is pocket A’ or F (Figure 3B), near the putative

p300 interface and residue G177, which is the site of a germline

variant strongly associated with chordoma development. If efforts

to target brachyury are ultimately successful, these drugs can be

repurposed for more common cancers in circumstances where

brachyury drives resistance to standard of care therapy.
FIGURE 4

Correlation of TBXT (brachyury) mRNA expression with overall survival by tumor type in TCGA datasets. The individual values are sign-corrected
log10 p-values of correlation. Negative signed-log10 p-values (y-axis) indicate that high TBXT expression is associated with better survival,
whereas positive values indicate high TBXT expression predicts poor survival. Cancer types are listed by their respective TCGA study
abbreviations (e.g., KIRP, kidney renal papillary cell carcinoma; ESCA, esophageal carcinoma; KIRC, kidney renal clear-cell carcinoma; LUAD,
lung adenocarcinoma). The results shown in this figure are in whole or part based upon data generated through the Lumin Bioinformatics
Software of Champions Oncology, Inc.
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